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Abstract

Multiple-Input Multiple-Output (MIMO) communications systems using multi-

antenna arrays simultaneously during transmission and reception have generated

significant interest in recent years. Theoretical work in the mid 1990’s showed the

potential for significant capacity increases in wireless channels via spatial multi-

plexing with sparse antenna arrays and rich scattering environments. However,

in reality the capacity is significantly reduced when the antennas are placed close

together, or the scattering environment is sparse, causing the signals received by

different antennas to become correlated, corresponding to a reduction of the effec-

tive number of sub-channels between transmit and receive antennas.

By introducing the previously ignored spatial aspects, namely the antenna ar-

ray geometry and the scattering environment, into a novel channel model new

bounds and fundamental limitations to MIMO capacity are derived for spatially

constrained, or spatially selective, channels. A theoretically derived capacity sat-

uration point is shown to exist for spatially selective MIMO channels, at which

there is no capacity growth with increasing numbers of antennas. Furthermore, it

is shown that this saturation point is dependent on the shape, size and orientation

of the spatial volumes containing the antenna arrays along with the properties of

the scattering environment.

This result leads to the definition of an intrinsic capacity between separate

spatial volumes in a continuous scattering environment, which is an upper limit

to communication between the volumes that can not be increased with increasing

numbers of antennas within. It is shown that there exists a fundamental limit to

the information theoretic capacity between two continuous volumes in space, where

using antenna arrays is simply one choice of implementation of a more general

spatial signal processing underlying all wireless communication systems.
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Notation and Symbols

AWGN additive white Gaussian noise

BER bit error rate

CDF cumulative distribution function

CSI channel state information

UCA uniform circular array

UGA uniform grid array

ULA uniform linear array

MISO multiple-input single-ouput

MIMO multiple-input multiple-output

SISO single-input single-output

SIMO single-input multiple-output

SNR signal-to-noise ratio

SDOF spacial degrees of freedom

d·e ceiling operator

b·c floor operator

f(·) complex conjugate of scalar or function f

A† complex conjugate transpose of matrix or vector A

|A| determinant of matrix A

‖a‖ euclidian norm of vector a

EX {·} Expectation operator over random process X

δ(i− j) Kronecker delta

〈·, ·〉 inner product

a′ transpose of matrix or vector a

η signal-to-noise ratio (SNR)

S1 1 sphere (unit circle)

S2 2 sphere (unit sphere)

In n× n identity matrix

1n n× n matrix of ones
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Chapter 1

Introduction

1.1 Motivation and Background

Since the end of the 19th century, when Marconi and Hertz demonstrated the

feasibility of radio transmissions, mankind has endeavored to fulfill the dream of

flawless wireless multimedia telecommunications, enabling people to communicate

with anyone or anything, anywhere, at any time, using a range of multimedia

services. Naturally, the provision of these services requires a further quantum leap

in a range of enabling technologies from the current state-of-the-art, such as the

well-known mobile phone.

To meet these demands the most significant hurdle facing wireless mobile com-

munications is that of increasing capacity; the measure of how much information

can be transmitted and received with a negligible probability of error. High per-

formance wireless communication systems are impeded by random channel noise,

intersymbol interference (ISI) and signal fading due to multipath effects. External

factors such as multi-user interference (MUI) and co-channel interference (CCI)

also contribute to an overall lowering of system capacity.

Trying to increase the capacity or data rate by simply transmitting more power

is extremely costly. This is due to the logarithmic relationship between the ca-

pacity of a wireless link and the signal-to-noise ratio (SNR) at the receiver [1]. A

more effective way of improving the data rate is to increase the signal bandwidth,

along with the transmitted power. However, with the frequency spectrum being

rapidly allocated, it is a scarce and very expensive resource at the frequencies of

interest, where propagation conditions are favorable1. Moreover, increasing the

1At this time, and into the foreseeable future, radio propagation and equipment costs restrict
mobile system to the 1-5GHz range.

1
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signal bandwidth beyond the coherence bandwidth of the wireless channel results

in frequency selectivity. Although well-established techniques such as equalization

and orthogonal frequency-division multiplexing (OFDM) can address this issue,

their complexity grows rapidly with signal bandwidth.

A significant advancement for increasing capacity performance has been the

development of smart antennas, which consist of an antenna array combined with

signal processing in both space and time. The use of spatial processing introduces a

new degree of freedom, offering enormous potential to improve performance includ-

ing range extension; capacity enhancement; higher data rates; and better bit error

rate performance [2,3]. Traditionally, the use of antenna arrays in mobile communi-

cations was limited to the base station, simply due to size and cost considerations.

The basic objective of those arrays, before interference suppression and other sig-

nal processing advances were considered, was to provide spatial diversity against

fading [4]. Signal fading, arising from multipath propagation caused by scattering,

has always been regarded as an impairment that has to be mitigated. However, a

recent successful application of smart antennas at both the transmit and the receive

ends of the communications link have shown that multipath interference can not

only be mitigated, but actually exploited to establish multiple parallel channels op-

erating simultaneously and in the same frequency band [5–7]. This multiple-input

multiple-output (MIMO) system provides much higher data rates without requir-

ing additional power or bandwidth over the single antenna case. A little known yet

earlier version of this outstanding result was also presented in [8] for application

to broadcast digital TV. However, the first results hinting at the capacity gains of

MIMO were published by J. Winters in [9].

The large spectral efficiencies achieved with MIMO systems are only valid un-

der certain channel conditions. MIMO systems were originally derived for the

independent and identically distributed (i.i.d.) flat Rayleigh fading channels corre-

sponding to a rich scattering environment and sufficiently spaced antennas. For a

single-user system with nT transmit and nR receive antennas, independent trans-

mission paths from each transmit antenna to each receive antenna provides approx-

imately min(nT, nR) separate channels, and hence the capacity scales linearly with

min(nT, nR) relative to a system with just one transmit and one receive antenna.

This linear capacity scaling requires a scattering environment and antenna place-

ment such that the matrix of channel gains between transmit and receive antenna

pairs has full rank and independent entries, along with perfect knowledge of these
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gains at the receiver2.

This thesis is primarily concerned with whether the outstanding capacity gains

predicted by Foschini [5] and Telatar [7] can be obtained in more realistic operating

scenarios. In particular, this thesis concentrates on the limits of MIMO capacity

in more physically realistic situations, such as when the antennas are placed in a

constrained region of space and when there exists a non-rich scattering environ-

ment, along with what specific gains result from adding more antennas. As would

be expected, the overall effect of increasing the density of antennas, or reducing

the number of scatterers, is to correlate the channel gains leading to a reduction

of channel capacity from that of the ideal i.i.d. case, therefore we begin with this

chapter exploring the i.i.d. case in some detail.

The remainder of this chapter introduces the difficulties of communicating

through a wireless environment and gives the possible gains achievable using mul-

tiple antenna systems in ideal scattering environments. This chapter serves as a

introduction to the concepts involved in MIMO systems and provides an overview

of the research to date, therefore the MIMO erudite reader may wish to proceed

directly to Chapter 2. For a more extensive introduction on MIMO systems, the

reader is referred to the recently published tutorials [11] and [12], which provide

an excellent introduction into the current state of MIMO research.

1.2 Wireless Communication Channels

The wireless channel places fundamental limitations on the performance of wireless

communications systems. The transmission path between the transmitter and the

receiver ranges from simple line-of-sight to complex environments with obstruction

from mountains, foliage, and man-made objects such as buildings. Unlike fixed

or wired channels which are stationary and predictable, wireless channels exhibit

an extremely random nature and are often difficult to characterize and analyze.

Notwithstanding the environmental factors mentioned above, any motion of the

transmitter or receiver also severely impacts on the performance of the communi-

cations system.

The mechanisms behind electromagnetic wave propagation through the wireless

channel are wide and varied, however, they can generally be attributed to reflec-

tion, diffraction, and scattering. More often than not, wireless communications

2Perfect knowledge of channel gains at both the transmitter and receiver gives an increase in
the slope of the linear scaling [10].
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Figure 1.1: Multipath Scattering Environment. (reprinted with permission from Dino
Miniutti c©2002.)

systems operate in urban areas with no line-of-sight propagation, and the presence

of buildings cause severe diffraction losses. Due to multiple reflections from vari-

ous objects, the electromagnetic waves propagate along various paths of differing

lengths. The presence of several paths by which a signal can travel along between

transmitter and receiver is known as multipath propagation. A simplified pictorial

of the multipath environment is shown in Fig. 1.1. At the receiver, the incom-

ing waves arrive from many different directions with different propagation delays.

The signal received at any point in space may consist of a large number of plane

waves with random distributed amplitudes, phases, and angles of arrival. The re-

ceived signal will typically be a superposition of these many multipath components

thereby creating a rapid fluctuation in signal strength at the receiver, known as

multipath fading. An example of a fading signal is shown in Fig. 1.2 (a) for a single

stationary antenna receiver. Here the rapid changes are clearly visible and the

signal power drops over 40dB in some fades.

If the objects in the channel are stationary and static, and any motion is due

only to the receiver, then the fading is purely a spatial phenomenon. These spatial

variations in the received signal of a moving receiver appear as temporal fading

as the receiver moves through the multipath field. Due to the constructive and

destructive effects of the multiple components at various positions in space, a mov-

ing receiver may encounter many fades over a small distance, or if moving fast
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Figure 1.2: Example of a Rayleigh fading channel. (a) Signal power as a function
of time for a single receive antenna. (b) Signal power as a function of time for two
receive antenna with maximum ratio diversity combining .

enough, over a small period of time. A typical variation in received signal power

is shown in Fig. 1.3 over a small 3λ × 3λ region in space. In this example we see

rapid variations in received power over just fractions of a wavelength, represent-

ing a commonly experienced scenario amongst cell-phone users where small head

movements can have a significant impact on reception.

1.2.1 Diversity

The traditional approach to mitigate fading effects is to simply allow for deep fades

by increasing the transmit power. However, this simple approach leads to a major-

ity of the time transmitting multiple times the actual required power for reliable

communication, therefore causing high power consumption and considerable user

interference.

A more recent and successful scheme to overcome the effects of signal fading is

that of exploiting channel diversity. The principle idea is for the receiver to obtain

several independent copies of the signal of interest transmitted over independently

fading channels, thus the probability that all the signal components will fade simul-

taneously is considerably reduced. For successful exploitation of diversity schemes
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Figure 1.3: Example of spatial fading. Signal power over a 3λ × 3λ region in a
multipath scattering environment.

in fading channels the different received branches must, on average, exhibit low

mutual correlation, that is, while one signal experiences a deep fade the others

should not. Several different schemes for obtaining several replicas of the signal

have been proposed:

Time diversity: Time diversity repeatedly transmits information at time spac-

ings that exceed the coherence time of the channel, where the coherence time

is the minimum time separation between independent channel fades. Time

diversity provides multiple repetitions of the signal to the receiver with in-

dependent fading conditions. Interleaving, forward error control (FEC), and

automatic repeat request (ARQ) are often used to exploit time diversity.

More recently, RAKE receivers for spread spectrum CDMA are being uti-

lized, where the multipath channel provides redundancy in the transmitted

signals. Although simple, time diversity has a significant drawback in the

inherent delay due to the time spreading.

Frequency diversity: Frequency diversity simply transmits information on more

than one carrier frequency. Provided the frequencies are separated by more

than the coherence bandwidth of the channel they will not experience the

same fades [13]. The coherence bandwidth of the channel is the minimum fre-

quency separation between independent fades and is inversely proportional to
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the delay spread in the channel. Frequency diversity can be utilized through

spread spectrum techniques or through interleaving and FEC techniques in

combination with multicarrier modulation [14]. Frequency diversity tech-

niques do however use much more expensive frequency spectrum and require

a separate transmitter for each carrier.

Polarization diversity: With the increase in mobile services, vertically polarized

whip antennas are becoming obsolete due to problems with hand-tilting of the

receiver. This recent change has increased interest in utilizing polarization

diversity at the base station. Polarization diversity consists of transmitting

information over two orthogonally polarized antennas. Measured horizontal

and vertical polarization paths between a mobile and a base station have been

shown to be uncorrelated [15], while providing only two diversity branches it

does allow the antennas to be co-located.

Space diversity: One of the oldest techniques, and with a recent resurgence in in-

terest, space diversity is a strong contender for many wireless mobile commu-

nication systems. As we have seen, in the presence of multipath the received

power-level is a random function of the user location and at times experi-

ences fading. By using spatially separated multiple antennas we can reduce

the probability of losing the signal by combining the antenna signals in order

to increase the received average power. For example, the spatial fading shown

in Fig. 1.3 reveals that if two antennas are separated by a fraction of a wave-

length, one may be at a null while the other is on a peak of the received signal

strength. An example of diversity combining is shown in Fig. 1.2 (b), where a

combination technique known as Maximum Ratio Combining (MRC) [16,17]

is used for a two receive antenna system. MRC is the optimal technique in the

sense that the received signal-to-noise (SNR) ratio is maximized. The value

of diversity combining is evident, the use of multiple antennas reduces the

signal fluctuations and eliminates the deep fades in the example shown, hence

the performance of the system will be greatly improved. This is particularly

important for high performance systems, where almost all the transmission

errors occur due to the fades.

This thesis is mostly concerned with spatial diversity, in particular the perfor-

mance improvement, with respect to channel capacity, that can be achieved when

multiple antennas are used. The use of multiple antennas at the receiver, known

as receive diversity, is a well understood and studied subject [16]. However, with



8 Introduction

the decreasing size of wireless mobile receivers, the employment of multiple an-

tennas at the receiver is becoming more difficult. With this limitation in mind,

there has been a recent surge in research focusing on the use of multiple anten-

nas at the transmitter, or transmit diversity [18–22]. In the case of transmitter

knowledge of the channel, transmit diversity involves transmission over multiple

antennas such that the signals from the individual antennas arrive in phase at the

receiver antenna. If the channel is not known at the transmitter, transmit diversity

is a more complicated process involving methods such as space-time coding which

codes information across antennas (space) and time. The basic idea of transmit

diversity without channel information is to transmit the information with different

preprocessing (coding, modulation, delay, etc.) from different antennas such that

the receiver can combine the received signals to obtain diversity.

While receive diversity simply needs multiple antennas with independent fad-

ing, transmit diversity requires special modulation/coding schemes in order to be

effective. Receive diversity also provides an array gain effect, where the total re-

ceived SNR is increased due to antenna combining, whereas transmit diversity does

not when the the channel is unknown at the transmitter and the total transmit

power is fixed (typical scenario).

Whilst spatial diversity protects the communication system from the effects of

fading when multiple antennas are used at either the transmitter or receiver, sig-

nificant capacity increases can be achieved by using multiple antennas at both ends

of the link [7, 23]. The use of multiple transmit and receive antennas to increase

capacity is known as spatial multiplexing, and when employed in rich scattering

environments it can create multiple data pipes within the same frequency band

to yield a linear (in the number of antennas) increase in capacity. Spatial multi-

plexing operates by breaking up the symbol stream into several parallel streams

which are then transmitted simultaneously within the same frequency band. At

the receiver, information from each transmit antenna has a unique spatial signa-

ture due to multipath propagation, which is exploited to separate the individual

data streams. With the increase in capacity obtained at no extra bandwidth or

power consumption, it is an attractive solution to the capacity demands of next

generation wireless systems.



1.3 Fundamental Limits to Wireless Communication Systems 9

1.3 Fundamental Limits to Wireless Communi-

cation Systems

As mentioned above, the use of multiple antennas at both ends of the link offer

significant capacity gains over single antenna systems, or transmit/receive diver-

sity systems. In this section we detail the capacity aspects of spatial diversity

and spatial multiplexing systems and demonstrate the outstanding capacity gains

achievable. A more detailed derivation and analysis of MIMO capacity is covered

in Section 1.4.

1.3.1 MIMO Fading Channel Model

The principle objective of a channel model in communications is to relate the

received signal to the transmitted signal. Let x(t) represent the baseband signal

to be transmitted at time t, then the received signal y(t) at a stationary receiver

is given by the convolution of the channel impulse response, h(τ, t), and x(t) as

y(t) =

∫ ∞

−∞
h(τ, t)x(t− τ)dτ + n(t), (1.1)

assuming additive white Gaussian noise (AWGN) at the receiver, given by n(t).

Noise models other than AWGN can also be considered [16, 24], however, this

thesis will restrict its attention to AWGN. Here we assume the channel impulse

response h(τ, t) is a function of both time t, and delay τ of the channel.

For a multiple-input multiple-output (MIMO) communication system shown

in Fig. 1.4 with nT transmit antennas and nR receive antennas, the channel impulse

response can be described by a nR × nT matrix H(τ, t), where element H(τ, t)|r,s
is the impulse response of the channel from transmitter s to receiver r. Let x(t) =

[x1(t), x2(t), . . . , xnT
(t)]′ be the nT × 1 vector of transmitted signals, where [·]′

denotes the vector transpose, then (1.1) can be written as

y(t) =

∫ ∞

−∞
H(τ, t)x(t− τ)dτ + n(t), (1.2)

where y(t) = [y1(t), y2(t), . . . , ynR
(t)]′ is the nR × 1 vector of received signals and

n(t) is the nR × 1 noise vector.

Although the continuous channel representation given by (1.2) is natural from

an electromagnetic wave propagation point of view, understanding digital commu-

nications is facilitated by a discrete time representation. Consider the sampling of
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Figure 1.4: A MIMO wireless transmission system with nT transmit antennas and
nR receive antennas. The transmit and receive signal processing (S/P) includes
coding, modulation, mapping, etc. and may be realized jointly or separately.

the received signal at t = nT with period T , then letting y(n) = y(nT ) we have

y(n) =
∞∑

k=−∞
H(k, n)x(n− k) + n(n). (1.3)

In this thesis, only narrowband frequency-flat systems will be studied, frequency

selective fading channel models and capacity results can be found in [6, 25, 26]. In

narrowband systems, where there is negligible delay τ , we may simplify the model

to

y = Hx + n, (1.4)

where, for simplicity, the time index n has also been dropped. The channel matrix

in (1.4) is now the nR × nT matrix

H =




h11 h12 · · · h1nT

h21 h22

...
. . .

...

hnR1 · · · hnRnT




, (1.5)

with elements H|r,t = hrt representing the complex channel gain between the t-th

transmit antenna and the r-th receive antenna, assumed constant over a symbol

period.
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1.3.2 Channel Capacity

The analysis of information theoretic channel capacity gives very useful, although

often idealistic, bounds on the maximum information transfer rate realizable be-

tween two points of a communication link. Furthermore, the theoretical capacity

allows analysis of the effects on the transmission rate of the system setup and chan-

nel model, along with providing a benchmark for real system implementation and

design of transmitter and receiver algorithms.

In this thesis we consider only an isolated single-user link limited only by ther-

mal noise. In comparison to a real system, this would correspond to an extreme

case where the entire bandwidth is allocated to an individual user, and that no

other users be active anywhere in the system or that their interference is perfectly

suppressed. Therefore, under these unrealistic conditions, the single-user analysis

presented provides an upper bound which is rarely attainable.

Consider a multiple-input multiple-output (MIMO) wireless communication

system shown in Fig. 1.4 with nT transmit and nR receive antennas and channel

model given by (1.4). For channel matrix H with random independent complex

elements, it was shown in [7, 23] that the capacity is given by

C = log

∣∣∣∣InR
+

η

nT

HH†
∣∣∣∣, (1.6)

where η is the average SNR at any receive antenna, † is the complex conjugate

transpose, and perfect channel information is known at the receiver and none at

the transmitter. Variants of channel information knowledge is further explored

in Section 1.4. Throughout this thesis logarithms are assumed base 2 and the

capacity (1.6) is therefore in bits/s/Hz.

Note that the above capacity formulation differs from the definition of Shan-

non [27]. Here, we consider a random channel model represented by a stochastic

channel matrix H , hence the capacity given by (1.6) is also random and represents

an instantaneous capacity for a particular realization of H . With the capacity

defined as a random variable, it is necessary to consider how to best characterize

it. Two simple summaries are often used: ergodic capacity [7, 28] and the outage

capacity [5, 29,30].
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Ergodic Capacity

The average or ergodic capacity is the average of all occurrences of C and is defined

as

Cerg , EH {C} = EH

{
log

∣∣∣∣InR
+

η

nT

HH†
∣∣∣∣
}

, (1.7)

where EH {·} is the expectation over all possible channel realizations H . The

ergodic capacity gives information on the average data rate offered by the link and

gives a useful measure of the possible performance for a randomly fading channel.

Outage Capacity

Another measure of channel capacity that is frequently used is outage capacity .

The outage capacity Cout is defined as the data rate that can be guaranteed with a

high level of certainty. If the channel capacity falls below the outage capacity, there

is no possibility that the transmitted block of information can be decoded with no

errors, whichever coding scheme is employed. Let p be the outage threshold (say

1% or 0.01), then define the outage capacity Cout,p for which

Prob{C ≤ Cout,p} = p. (1.8)

The outage capacities are often presented in the form of a Cumulative Distribution

Function (CDF), for example see Fig. 1.5.

1.3.3 Single-Input Single-Output (SISO) System

Consider a single channel corrupted by additive white Gaussian noise (AWGN).

Denote the normalized (unit power) random complex Gaussian amplitude of the

channel as h11, assumed constant over the symbol interval, then the channel ca-

pacity (1.6) becomes a random quantity given by

C = log
(
1 + η |h11|2

)
. (1.9)

The cumulative distribution of this 1×1 ‘no diversity’ (one transmit and one receive

antenna) system is shown in Fig. 1.5. Notice that for this SISO system, the outage

capacity Cout,1% is approximately zero (bottom of curve), indicating the capacity

can become very small at certain times due to fading. In fact, although the ergodic

capacity is around 2.5 bps/Hz (top of curve), the instantaneous capacity will be
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environment with SNR of 10dB. For each curve, the values at the top and bot-
tom of the vertical scale gives an indication of the ergodic and outage capacities
respectively.

below 1 bps/Hz for 10% of the time. It is evident from (1.9) that for high SNRs

a 3dB increase in η gives an increase in capacity of one bps/Hz, as can be seen

in Fig. 1.6, where the ergodic capacity of the SISO system is shown for increasing

SNR.

1.3.4 Spatial Diversity Systems

Given a single transmit antenna and a set of nR antennas at the receiver (SIMO

system), the channel is now described by a column vector of independent elements

h = [h11, h21, . . . , hnR1]
′, where hr1 is the channel gain from the transmitter to the

r-th receive antenna. The random channel capacity (1.6) is then given by

C = log
∣∣InR

+ ηhh†
∣∣ (1.10a)

= log
(
1 + ηh†h

)
(1.10b)

= log

(
1 + η

nR∑
r=1

|hr1|2
)

, (1.10c)
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Figure 1.6: Ergodic channel capacity with increasing SNR for different numbers of
transmit and receive antennas for an i.i.d. Rayleigh fading environment.

where (1.10b) follows from the reciprocity of (1.6), that is, as |I + AB| = |I + BA|
the channel capacity (1.6) is invariant under the transformation H → H†. It can

be seen in Fig. 1.5 that receiver diversity increases both the outage and ergodic

capacity compared to the SISO system for 5 and 9 receive antennas. The use of

multiple receive antennas reduces fading, however, due to the logarithmic increase

in capacity with increasing receive antennas, the higher SNR of the combined an-

tennas quickly gives limited returns. The increase in ergodic capacity is also limited

with increasing SNR, as can be seen in Fig. 1.6, due to the logarithmic relationship.

Consider also a system employing transmit diversity. Using nT transmit anten-

nas gives a multiple-input single-output (MISO) system with the channel described

by a row vector h = [h11, h12, . . . , h1nT
], where h1s is the channel gain from the s-th

transmit antenna to the receive antenna. The random capacity (1.6) can be ex-

pressed as

C = log

(
1 +

η

nT

hh†
)

(1.11a)

= log

(
1 +

η

nT

nT∑
t=1

|h1t|2
)

, (1.11b)

where the normalization factor 1/nT ensures a fixed total transmitter power. It
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is important to note here there is no array gain, unlike the receive diversity case

where the total received SNR is increased due to antenna combining. In this case

the outage capacity is improved (see Fig. 1.5) but not the ergodic capacity which

remains approximately the same as the no diversity case.

1.3.5 Multiple-Input Multiple-Output (MIMO) System

Now consider a full diversity system shown in Fig. 1.4, where multiple antennas are

used at both ends of the link. A MIMO system consisting of nT transmit and nR

receive antennas with independent channel gains has capacity given by (1.6), and

is shown in Fig. 1.5 for the 3 × 3 and 5 × 5 cases. The enormous gains of MIMO

systems are apparent, both in ergodic and outage capacity. It is important to note

that all the plots in Fig. 1.5 have the same transmit power and bandwidth, therefore

the significant gains of MIMO comes only at a cost of increased transmitter and

receiver complexity due to the processing of the multiple antennas.

To indicate the potential performance of MIMO systems consider the special

case of nT = nR. Then, for a large number of antennas, by the law of large numbers

HH†/nT → InR
, the ergodic capacity increases linearly with nR;

Cerg = nR log(1 + η). (1.12)

In general, the capacity grows linearly with the smallest number of antennas,

min(nT, nR), hinting at the significant capacity gains of MIMO systems. More-

over, the capacity growth does not saturate as long as additional uncorrelated

antennas can be incorporated into the arrays. In Fig. 1.6 we see that the use of

multiple antennas at both ends of the link provides much better performance for a

fixed SNR than those systems employing multiple antennas at one end of the link

only. In fact, for nT = nR, and the special case of H = InR
we have

Cerg = nR log

(
1 +

η

nR

)
→ η

ln(2)
, as nR →∞, (1.13)

which, unlike the SISO or diversity cases, shows the capacity scaling linearly, rather

than logarithmically, with increasing SNR. In fact, for large SNR the MIMO system

achieves an increase of almost nR bps/Hz for every 3dB increase in SNR, compared

one bps/Hz for a 3dB increase in SNR for the SISO case.
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1.4 Capacity of MIMO systems

The underlying mathematical nature of MIMO, where data is transmitted over

a matrix rather than a vector channel, creates new and enormous opportunities

beyond just the added diversity or array gain benefits. This section provides a

detailed derivation and analysis of the capacity of a matrix channel, and sets the

scene for what follows in the rest of this thesis.

Consider the transmission of nT signals x ∈ CnT over a linear matrix channel

with AWGN given by the complex baseband vector notation (1.4), where the noise

components n are statistically independent with E
{
nn†} = σ2InR

, and have

identical power at each of the nR antenna outputs. The transmitted signals are

assumed to be of fixed narrow bandwidth, with total transmitted power constrained

to PT, regardless of the number of transmit antennas, equivalently,

E
{
x†x

}
= tr (Φx) ≤ PT, (1.14)

where Φx = E
{
xx†

}
is the covariance matrix of the transmitted signal vector x,

and tr(·) is the trace of the matrix.

The classical results in [5, 7] used an ideal MIMO environment where there is

rich scattering and enough separation between the antennas at the transmitter and

at the receiver such that the fades for each transmitting-receiving pair are inde-

pendent. This model is satisfied by assuming each element of the random channel

matrix H is independent and has uniform phase and Rayleigh magnitude. There-

fore, the elements of the channel matrix are modelled by i.i.d. complex Gaussian

with zero mean and unit variance. Except where otherwise indicated, it is assumed

the realization of H is known at the receiver.

1.4.1 Channel Capacity

It is important to note that the information theoretic capacity is an upper limit on

the possible error-free bit rate, and this limit can only be approached in practice

with high complexity. In real system implementation, the achievable bit rate is

limited due to coding, detection, constellation size, etc., therefore any practical

system can only achieve a bit rate (at some desired small BER) that is typically a

fraction of capacity.

The capacity is defined as the maximum of the average mutual information

I(x; y) between the input and the output of the channel with respect to all possible
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transmitter statistical distributions p(x) [1]:

C = max
p(x):tr(Φx)≤PT

I(x; y). (1.15)

Here the mutual information between transmitted and received signals is given by

I(x; y) = H(y)−H(y|x) (1.16a)

= H(y)−H (Hx + n|x) (1.16b)

= H(y)−H (n|x) (1.16c)

= H(y)−H (n) , (1.16d)

where H(·) is the entropy of a random variable, and gives a measure of uncertainty.

It is assumed that the transmitted signals x and the noise n are independent.

From (1.16d) maximizing I(x; y) is equivalent to maximizing H(y), which occurs

when y is circularly symmetric complex Gaussian, which is the case when x is

circularly symmetric complex Gaussian, and is equal to H(y) = log |πeΦy|, with

covariance matrix Φy = E
{
yy†

}
[7]. In this case the mutual information is given

by

I(x; y) = log |πeΦy| − log |πeΦn| (1.17a)

= log

∣∣∣∣
1

σ2
Φy

∣∣∣∣ (1.17b)

= log

∣∣∣∣InR
+

1

σ2
HΦxH

†
∣∣∣∣ . (1.17c)

Define

C(Φx) , log

∣∣∣∣InR
+

1

σ2
HΦxH

†
∣∣∣∣ , (1.18)

as the capacity achieved by transmitting independent complex circular Gaussian

symbols along the eigenvectors of Φx. Now the capacity of the channel (1.15)

becomes a transmitter optimization problem, where, subject to the transmitter

power constraint, it is required to find the optimal input covariance matrix to

maximize C(Φx):

C = max
Φx;tr(Φx)≤PT

C(Φx). (1.19)
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1.4.2 Channel Unknown at Transmitter

When there is no feedback in the system and the channel is known at the receiver

but unknown at the transmitter, it was shown in [5,7] that in i.i.d. Rayleigh fading

the optimal input covariance matrix that maximizes ergodic capacity occurs for

equal power uncorrelated sources, given by Φx = PT

nT
InT

. Therefore, the channel

capacity is given by

Cep = log

∣∣∣∣InR
+

η

nT

HH†
∣∣∣∣ , (1.20)

where η = PT/σ2 is the average SNR at any receive antenna.

To emphasis the outstanding capacity growth achievable consider the singular

value decomposition (SVD) of the channel matrix H , where the MIMO channel

can be decomposed into an equivalent system of parallel AWGN SISO channels.

Let H = UDV † be the SVD of H , then U = [u1, . . . , unR
] ∈ CnR×nR and V =

[v1, . . . , vnT
] ∈ CnT×nT are unitary and D = diag(

√
λ1,

√
λ2, · · · ,

√
λN , 0, · · · , 0),

where
√

λn, n = {1, . . . , N}, are the singular values of the channel matrix, and

N = rank(H) ≤ min(nT, nR). Therefore, (1.4) can be written as

ỹ = Dx̃ + ñ, (1.21)

where ỹ = U †y, x̃ = V †x and ñ = U †n. Therefore we have a system of N equiva-

lent parallel SISO eigen-channels, as illustrated in Fig. 1.7, with signal powers given

by the non-zero eigenvalues {λ1, λ2, . . . , λN}. Hence, the channel capacity (1.20)

can be expressed as the sum of the capacities of the individual subchannels:

Cep =
N∑

n=1

log

(
1 +

η

nT

λn

)
. (1.22)

Clearly, with a reduced number of significant eigenvalues in (1.22) the capacity of

the MIMO channel will be reduced because of a rank deficient channel matrix. This

situation occurs when the signals become correlated due to antenna placement or

scattering environment, and is the main focus of this thesis.

1.4.3 Channel Known at Transmitter

If the channel is fading slowly enough it may remain constant long enough for

timely feedback of the channel state to the transmitter. In this case, when the
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Figure 1.7: Illustration of parallel eigen-channels of a MIMO system for the singular
value decomposition H = UDV †. The width of the line indicates the different
eigen-channel power gains λn.

channel is known at the transmitter (and at the receiver) then the optimal Φx is

called the waterfilling solution [7,31–33]. Here waterfilling the transmit power over

the parallel SISO channels whose gains are given by the eigenvalues of the channel

matrix, gives the power allocation

Pn =
(
µ− λ−1

n

)+
, (1.23)

to the n-th eigenmode of the channel, where µ is the waterfill level chosen such

that
∑

n Pn ≤ PT, and a+ denotes max(a, 0). The channel capacity is then given

by [7]

Cwf =
∑

n

log(µλn)+. (1.24)

Waterfilling allocates more power to those subchannels with higher SNR ηλn, with

the water level µ indicating the amount of power to be poured into the channel

formed by the function {λ−1
n , n = 1, 2, . . . , N}. Each of the sub-channels contributes

log(µλn)+ to the total capacity. Feedback of the channel state and waterfilling pro-

vides significant capacity gains over uniform power allocation at low SNR, however,

the gain margin becomes negligible as the SNR increases [34]. The intuition is that

when there is low SNR, it is important to allocate the available transmit power to

the strongest sub-channels, while as the SNR increases, there is sufficient power to

be distributed evenly over all the sub-subchannels.
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1.4.4 Partial Channel Knowledge

Along with the two cases mentioned above, namely knowledge and no knowledge

of the channel at the transmitter, there has been much interest in the capacity

of MIMO systems with partial channel knowledge at the transmitter, as well as

partial or no knowledge at both transmitter and receiver.

In systems with channels that change rapidly, feedback of perfect channel

knowledge may not be possible. However, feedback of partial knowledge may

be possible using the channel distribution, such as the covariance [35–39] or the

mean [35,36,40,41], which changes much more slowly than the channel itself. Here

not only does the capacity increase, but this feedback allows the transmitter to

identify the dominant eigen-modes of the channel and achieves higher capacity

with simple coding schemes [12].

The well known linear growth in capacity with increasing antennas relies on

perfect channel knowledge at the receiver [5]. However, if the channel experiences

rapid fluctuations the receiver may not be able to perform reliable channel estima-

tion. In the case of no channel knowledge at both the transmitter and receiver [42]

showed a saturation point occurs in capacity growth with increasing numbers of

antennas. Modelling the channel matrix components as i.i.d. complex Gaussian

random variables that remain constant for a block of T symbol periods, [42] showed

that the capacity does not increase after the number of antennas is increased be-

yond the channel coherence interval T . This result was further studied in [43] for

high SNRs, where the optimal number of antennas is shown to be bT/2c. Further-

more, lower capacity growths are predicted for continuous fading channels where

the block fading assumption does not hold [44,45].

Although the results for no receiver channel knowledge, presented in [42, 43],

indicate limited capacity for rapidly changing channels, it may be possible for

the receiver to resolve the slower varying channel distribution. Here, in contrast

to the capacity saturation predicted in [42, 43] for increasing antenna numbers,

recent results [46,47] indicate that additional antennas will always increase capacity

provided their channel fading coefficients are spatially correlated. Thus, in contrast

to results with perfect channel knowledge, these results indicate that with partial

knowledge fade correlations can be beneficial. This result implies that for highly

mobile, fast fading channels that cannot be accurately measured, reducing the

spacing between antennas may in fact improve capacity performance [12].

It is important to also note that other propagation effects not captured in (1.4),

such as multipath delay spread, may serve to reinforce the capacity gains of MIMO.
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This was shown in particular in the case when the transmit channel is known [6]

but also in the case when it is unknown [26].

1.4.5 Achieving Capacity: Space-Time Codes

The information theoretic analysis presented in the previous sections and through-

out this thesis does not reflect the performance achieved by actual communica-

tions systems, as it is an upper bound computed without any complexity restric-

tions. Therefore, similar to the need of powerful error-correction codes in single-

antenna systems, analogous multidimensional error-correction codes are required

in multiple-antenna systems in order to approach the rates promised in [5,7]. Such

multidimensional coding procedures (i.e., codes that involve both the spatial and

the temporal dimensions of the input signals) are generally referred to as “space-

time codes” (STC) [21]. This thesis does not cover STC in any detail, however, for

completeness we present an overview below. A more detailed summary of space-

time coding can be found in [48].

One of the first space-time coding structures (known as D-BLAST) was pre-

sented in [23] and is structured in a way to avoid the exponential explosion of

complexity with the number of spatial dimensions. The BLAST project showed

that multipath is not as harmful as previously thought and that multiple diversity

can be exploited to increase capacity even when the channel is unknown [23, 42].

Nonetheless, in practice, this scheme is still quite complex and there is a great

interest in investigating the construction of much simpler alternatives for practical

use [21,48–54].

Along with coding for maximal data rates or spatial multiplexing (BLAST),

there is a need to encode across the individual antennas to protect the data against

errors due to channel fading. Here the goal of the coding process is to minimize the

outage probability, that is, to improve the spatial diversity. The first such attempt

was by Alamouti [55], where two transmit antennas where used to provide an order

two diversity advantage to a receiver with a single antenna and no CSI at the trans-

mitter. Recently, there have been several attempts at extending the work of [55]

to more than two transmit antennas [56, 57]. However, in the case of a general

complex symbol constellation, full-rate orthogonal codes cannot be constructed,

thereby losing the simple decoding structure offered by Alamouti’s scheme. There-

fore there have been a number of design strategies to extend the work of [55] where

either the data rate or the orthogonality of the code is sacrificed, to either preserve

the simple decoding structure, or retain full data rate, respectively [22,58,59].
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Full spatial multiplexing (BLAST) gives full independent usage of the antennas,

however, it provides limited diversity and may not provide enough protection to

meet the required bit error rate (BER). Therefore, it is often desirable to sacrifice

some data rate for an increase in diversity, where the tradeoff between data rate

and diversity is obtained via some optimization scheme [56, 60–63]. Although the

data rate increases linearly with the number of antennas, the diversity effect gives

diminishing returns. Therefore, with a large number of antennas it is sensible to

place more emphasis on spatial multiplexing and less on diversity schemes.

1.5 Structure of this Thesis

This chapter has summarized the theoretical and practical features of single-user

multiple-antenna communication systems for use in wireless networks. Information

theoretic studies have predicted outstanding capacity gains for MIMO wireless links

over current single antenna systems. Whether this can be achieved in practice is still

to be seen, however, preliminary experiments have shown promising results [25,64].

One of the most significant factors determining the capacity of the MIMO sys-

tem is that of the channel and hence it is important to have realistic channel mod-

els. However, most of the analysis of MIMO systems have been performed using

rather idealistic channel models and conditions. The outstanding linear capacity

growth outlined in this chapter is only valid under certain channel conditions. It

was originally derived for the independent and identically distributed (i.i.d.) flat

Rayleigh fading channel. However, Rayleigh fading models are inadequate in de-

scribing many fading channels encountered in practice, and the i.i.d. assumption

only holds for significant scattering and sufficiently spaced antennas, which may

not be feasible in many scenarios.

In this thesis, the capacity performance of MIMO systems will be examined in

more physically realistic environments. By including the spatial aspects, which have

been previously ignored, into the channel model, this thesis derives new bounds and

fundamental limitations to MIMO capacity within general scattering environments.

1.5.1 Questions to be Answered in this Thesis

In this thesis the following open questions are addressed:

• What dictates the information theoretic capacity of a MIMO wireless chan-

nel?
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• What are the key propagation conditions to achieve this capacity?

• Is there a tractable analytical model which describes the observable capacity

behavior?

• Is there a more fundamental capacity between the two spatial volumes con-

taining the antenna arrays?

• How can this continuous spatial channel be modelled?

• What factors determine the information theoretic capacity between two re-

gions in space?

• What is the relationship between the MIMO channel and the continuous

spatial channel?

1.5.2 Content and Contribution of Thesis

In the following the chapters of this thesis are outlined with emphasis on contribu-

tions made within:

Chapter 2 introduces the concept of space into the capacity calculations of MIMO

systems. By exploiting the convergence of the ergodic capacity as the num-

ber transmit antennas is increased an upper bound on the ergodic capacity

is derived which depends on the spatial correlation at the receiver. Using a

novel channel model the separate effects of scattering environment and an-

tenna array configuration can be seen on the spatial correlation, allowing for

the capacity to be studied analytically for a wide variety of scattering envi-

ronments and antenna placement. Specifically, the capacity is computed for

several common scattering distributions and the uniform linear and uniform

circular arrays. Most significantly, a capacity saturation is shown to occur

as the number of antennas is increased for a fixed sized array, where further

increases in antennas fails to give a corresponding capacity increase.

Chapter 3 further explores and quantifies the saturation observed in Chapter 2.

Using the ergodic capacity bound derived in Chapter 2, the capacity of a

uniform circular array is shown theoretically to have a distinct saturation

point proportional to the radius of the array. This result is then extended

to include arbitrary array geometries within a circular aperture and non-

isotropic scattering, where the minimum number of antennas required to
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achieve maximum capacity for the aperture is derived. A fixed received power

concept is introduced, where regardless of the number of antennas within the

receiver aperture the total received power remains constant. This physically

realistic normalization shows that there is a fundamental limit to MIMO

communications which is independent of the number of antennas.

Chapter 4 introduces a MIMO channel model which includes the spatial aspects

of the arbitrary transmit and receive arrays, along with the spatial properties

of the random scattering environment. This chapter begins by characterizing

the well used plane wave for modelling wireless channels, giving a truncated

modal expansion that is used throughout the rest of the thesis. Using this

truncated expression, the channel is decomposed into three distinct regions of

signal propagation and allows a spatial degrees of freedom (SDOF) concept

to be defined. The defined SDOF gives the number of free parameters of

the spatial channel, and is shown to be defined by the transmit and receive

aperture size, and the scattering environment, and ultimately determines

the maximum capacity achievable. Finally, the concept of spatial richness is

addressed, where it is argued that the size of the apertures must be considered

when defining the richness of a channel.

Chapter 5 numerically studies the MIMO model presented in Chapter 4 for a wide

range of scattering, aperture and array scenarios. The theoretical results of

the previous chapters are verified via simulation, including antenna saturation

and the effects of angular spread. A discrete scattering model is presented,

which models the scattering environment via a number of paths between

the apertures. Angular spread surrounding both the transmit and receive

apertures is introduced into the model under the assumption of independent

local scattering. This model then allows the simulation of almost all channel

scenarios previously presented in the literature, including the elusive pinhole

channel.

Chapter 6 introduces the concept of an intrinsic or fundamental capacity between

the apertures. The intrinsic capacity gives the maximum capacity between

two circular or spherical apertures, regardless of the number of antennas,

array geometry, or antenna signal processing. This capacity is shown to be

dependent on the aperture size and the scattering environment. Under this

framework, MIMO is shown to be an implementation issue where the contin-

uous apertures are sampled with discrete antenna arrays. The results of the
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circular and spherical apertures is extended to continuous arbitrary apertures.

A novel framework is presented, where the capacity between continuous spa-

tial apertures is developed using the general concepts of separable Hilbert

Spaces.





Chapter 2

Introducing Space into MIMO

Capacity Calculations

Multiple-Input Multiple-Output (MIMO) communication systems using multiple

antenna arrays simultaneously during transmission and reception have generated

significant interest in recent years. Theoretical work of [7] and [5] showed the poten-

tial for significant capacity increases in wireless channels utilizing spatial diversity.

Consider a system employing nT transmit antennas and nR receive antennas in

a narrowband flat fading channel. It was shown in [5] that as min(nT, nR) tends

to infinity then the capacity of the system grows proportionally to min(nT, nR)

for fixed transmit power, provided that the fading between antennas is indepen-

dent and identically distributed (i.i.d.) Rayleigh. This linear capacity growth has

emerged as one of the most promising solutions for overcoming the demand for

higher bit rates in wireless communications. In reality, however, the capacity is

significantly reduced when the fades are not independent, but correlated due to

insufficient antenna separation or angular spread of the scatterers surrounding the

arrays [5, 65].

A significant hurdle in analyzing the capacity of wireless fading MIMO sys-

tems is the random nature of the channel. The ergodic, or mean, capacity is often

used to characterize the random channel capacity. However, the ergodic calcula-

tion requires extensive simulations which limits analysis into the physical factors

determining MIMO capacity. A closed form expression for the ergodic capacity

is derived in [66] for the special case of uncorrelated Rayleigh fading. However,

as mentioned above, i.i.d. Rayleigh fading models an unrealistic environment not

often seen in practice.

Capacity results for various correlation models using Monte Carlo simulations

27
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are studied in [30, 65, 67–70], and asymptotic results and bounds on the effects of

correlated channels are presented in [65,67,68,71–73]. However, these simulations,

bounds and asymptotic results have been for a limited set of channel realizations

and/or antenna configurations. For single antenna systems it is sufficient to only

consider received signal power and/or the time varying amplitude distribution of

the channel. However, for systems employing multiple antennas, consideration

must also be given to the angle of arrival (AOA) of the impinging signals as well

as the spatial geometry of the array. Most channel models do not include spatial

information (antenna locations and scattering environment) explicitly. Although

spatial information is represented by the correlation between channel matrix ele-

ments there is no direct realizable physical representation, and, therefore does not

easily lend itself to insightful capacity results. In particular, of interest is the effect

on channel capacity of antenna placement, particularly in the realistic case when

antenna arrays are restricted in size, along with non-isotropic scattering environ-

ments.

In contrast, in this chapter an expression for MIMO capacity is derived which

overcomes these limitations, that is, with additional theory for modelling scattering

environments refined here, a model is derived which can be readily reconciled with

a multitude of scattering distributions and antenna configurations and allows us to

derive a closed form expression for the MIMO capacity.

2.1 Convergence of Ergodic Capacity

Consider a MIMO system consisting of nT transmit antenna and nR receive anten-

nas. When the transmitted signal vector is composed of statistically independent

equal power components, each with a Gaussian distribution, the ergodic channel

capacity was shown to be [5, 7]

Cerg = EH

{
log

∣∣∣∣InR
+

η

nT

HH†
∣∣∣∣
}

, (2.1)

where H is the nR×nT random flat fading channel matrix, assumed known at the

receiver, and normalized such that E
{|hrt|2

}
= 1, where hrt is the channel gain

from the t-th transmitter to the r-th receiver. Note that the logarithm is base 2

and gives the capacity in bits-per-second-per-Hertz (bps/Hz).

Let H = [h1 h2 · · · hnT
], where ht is the nR × 1 complex zero-mean Gaussian

vector of channel gains corresponding to the t-th transmit antenna, then the cor-
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relation matrix at the receiver is defined as R , E
{

hth
†
t

}
, where the expectation

is over all transmitters and channel realizations, then

R =




ρ11 ρ12 · · · ρ1nR

ρ21 ρ22

...
. . .

...

ρnR1 · · · ρnRnR




, (2.2)

with elements R|rr′ = ρrr′ corresponding to the spatial correlation between two

sensors r and r′ at the receiver.

Consider the situation where the transmit array has uncorrelated transmit

branches corresponding to independent ht vectors. This can occur when the trans-

mit antennas are sufficiently separated for a given angular spread of the scatterers

surrounding the transmit array. For example, using the correlation expression de-

veloped in Section 2.2, a two dimensional isotropic scattering environment with

antennas separated by 0.35λ gives correlation of 0.1. However, for more realistic

scattering environments, when the transmitter is usually mounted high above the

scatterers, the angular spread is considerably less. For angular spread of 3◦ the

antennas must be separated by around 9λ to achieve the same level of correlation.

With sufficient transmit antenna spacing the vectors ht are independent and the

sample correlation matrix, defined as

R̂ , 1

nT

nT∑
t=1

hth
†
t , (2.3)

converges to R for large numbers of transmit antennas (nT →∞). Observing that

the channel matrix product can be expressed as

HH† =

nT∑
t=1

hth
†
t , (2.4)

then for a large number of sufficiently separated transmit antennas the ergodic

capacity converges to the capacity C;

lim
nT→∞

Cerg = C , log |InR
+ ηR|. (2.5)

The convergence error of the ergodic capacity to the expression (2.5) is shown

in Fig. 2.1 for increasing numbers of uncorrelated transmit antennas and various
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Figure 2.1: Convergence error of ergodic capacity Cerg (2.1) to bound C (2.5) with
increasing number of transmit antennas for various numbers of receive antennas
and SNR 10dB.

numbers of receiver antennas. It is important to observe that the ergodic capac-

ity approaches the capacity C for finite numbers of transmit antennas, with faster

convergence for smaller numbers of receive antennas. Therefore, the capacity ex-

pression will be accurate for many practical fixed wireless scenarios, where the

receiver has a small number of antennas whilst the base station is less restricted in

geometrical size and is able to provide a sufficient number of uncorrelated trans-

mit branches. Therefore, provided the channel does not contain keyholes1 and the

transmit antennas are sufficient in number and separation, the capacity C provides

a good estimate of the ergodic capacity Cerg. Note that a bound similar to (2.5)

has also been derived in [76] to demonstrate a space-time cross-correlation model

for a von-Mises scattering environment.

1It has been shown theoretically that some channels may exhibit low capacity even though
there is no spatial correlation at the transmitter or receiver [74,75]. However, no observations of
keyhole (pinhole) degenerate channel effects from practical measurements have appeared in the
literature. Therefore, this Chapter will assume non-degenerate channels only. The properties of
these special channels are studied further in Chapter 5.
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2.1.1 Capacity Scaling Limits

The capacity given by (2.5) is maximized when there is no correlation between the

receive antennas, i.e., R = InR
, giving

Cmax = nR log(1 + η). (2.6)

Therefore, in the idealistic situation of zero correlation at both transmitter and

receiver arrays (corresponding to the i.i.d. case) we see the maximum capacity

scaling is linear in the number of receive antennas. In this case, the system achieves

the equivalent of nR independent nonfading subchannels, each with SNR η. This

result agrees with the traditional capacity formulation [66] which is widely used to

advocate the use of MIMO systems.

Conversely, when each pair of antenna elements at the receiver are fully corre-

lated, the correlation matrix becomes the nR × nR matrix of ones, R = 1nR
, and

the capacity of the MIMO system will be minimized to

Cmin = log(1 + nRη). (2.7)

Here the logarithmic capacity growth with increasing receiver antennas is due to

an effective increase in the average SNR of the single antenna case, due to the

assumption of independent noise at each receiver, and is widely known as a receiver

diversity array gain effect.

The capacity (2.5) provides an expression for the ergodic capacity without the

need for extensive simulations. In contrast to current simulation studies presented

in the literature, which are difficult to relate to physical factors of the system, in the

next section it is shown that for essentially all common scattering distributions, and

any array configurations, it is possible to compute a closed form capacity expression.

2.2 Receiver Spatial Correlation for General Dis-

tributions of Farfield Scatterers

2.2.1 Channel Model

The one-ring model was initially proposed in [77] to model fixed wireless commu-

nications systems where the base station is elevated and not obstructed by local

scattering, whilst the user is uniformly surrounded by scatterers. In [65] this model
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was extended to include multiple transmit and receive antennas, and the capacity

was studied for various transmit angular spreads and receive antenna geometries.

Here the multipath propagation and fading correlation is modelled using a gener-

alized 3D one-ring model that allows for more general scattering environments at

both the transmit and receive arrays. This model allows for greater insights into

the spatial factors determining channel capacity, in particular, closed-form capac-

ity expressions can be computed for a wide range of scattering environments and

antenna geometries.

Consider the narrowband transmission of nT statistically independent uniform

power signals {x1, x2, . . . , xnT
} through a general 3D flat fading scattering environ-

ment with scatterers assumed distributed in the farfield from the receiver antennas,

as shown in Fig. 2.2, then the incoming signal from direction ψ̂ at the receiver is

given by

Φ(ψ̂) =

nT∑
t=1

xt gt(ψ̂), (2.8)

where k = 2π/λ is the wavenumber with λ the wavelength, and gt(ψ̂) is the effective

random complex gain of the scatterers for the transmitted signal xt from the t-

th transmit antenna arriving at the receiver array from direction ψ̂. Since the

scatterers are assumed farfield to the receiver antennas, signals impinging on the

receiver array will be plane waves, therefore, the received signal at the r-th sensor

located at yr is given by

zr =

∫

S2
Φ(ψ̂)e−ikyr·b ds(ψ̂) (2.9a)

=

nT∑
t=1

xt

∫

S2
gt(ψ̂)e−ikyr·b ds(ψ̂), (2.9b)

where ds(ψ̂) is a surface element of the unit sphere S2. Therefore, the channel gain

hrt from the t-th antenna to the r-th receiver is given by

hrt =

∫

S2
gt(ψ̂)e−ikyr·b ds(ψ̂), (2.10)

with normalized scattering gains such that

∫

S2
E

{∣∣∣gt(ψ̂)
∣∣∣
2
}

ds(ψ̂) = 1. (2.11)
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2.2.2 Correlation of the Received Complex Envelopes

Define the normalized spatial correlation function between the complex envelopes

of two received signals r and r′ located at positions yr and yr′ , respectively, as

ρrr′ =
E {zrzr′}√

E {zrzr}E {zr′zr′}
, (2.12)

where x denotes the complex conjugate of x, and zr denotes the noiseless received

signal at receiver r.

From (2.9b) the covariance between signals at sensors r and r′ is given by

E {zrzr′} = E

{
nT∑
t=1

xt

∫

S2
gt(ψ̂)e−ikyr·b ds(ψ̂)

nT∑

t′=1

xt′

∫

S2
gt′(ψ̂

′
)eikyr′ ·b 

′
ds(ψ̂

′
)

}

(2.13a)

= σ2
T

∫∫

S2

nT∑
t=1

E

{
gt(ψ̂)gt(ψ̂

′
)

}
e−ik(yr·b −yr′ ·b 

′
)ds(ψ̂)ds(ψ̂

′
), (2.13b)

where σ2
T = E

{|xt|2
}

,∀t, is the transmit power for each antenna, and it is assumed

the transmitted symbols are independent across antennas and independent of the

scattering environment. Assuming a zero-mean uncorrelated scattering environ-

ment, the scattering channel is characterized by the second-order statistics of the

scattering gain function gt(ψ̂), given by,

E

{
gt(ψ̂)gt(ψ̂

′
)

}
= Gt(ψ̂)δ(ψ̂ − ψ̂

′
), (2.14)

where Gt(ψ̂) = E

{∣∣∣gt(ψ̂)
∣∣∣
2
}

, then (2.13b) simplifies to

E {zrzr′} = σ2
T

∫

S2

nT∑
t=1

Gt(ψ̂)e−ik(yr−yr′ )·b ds(ψ̂). (2.15)

Substitution of (2.15) into (2.12) gives the correlation between the two receiver

sensors as

ρrr′ =

∫

S2
P(ψ̂)e−ik(yr−yr′ )·b ds(ψ̂), (2.16)
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Figure 2.2: Scattering model for a flat fading MIMO system. gt(ψ̂) represents the
effective random complex gain of the scatterers for transmitted signal xt arriving
at the receiver array from direction ψ̂ via any number paths through the scattering
environment. The sphere surrounding the receive antennas contains no scatterers
and is assumed large enough that any scatterers are farfield to all receive antennas
located within.
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where P(ψ̂) is the normalized average power received from direction ψ̂, defined by

P(ψ̂) ,

nT∑
t=1

Gt(ψ̂)

∫

S2

nT∑
t=1

Gt(ψ̂)ds(ψ̂)

. (2.17)

In two dimensional scattering environments the power distribution (2.17) is com-

monly known as the power azimuth spectrum (PAS) [78], or power azimuth distri-

bution (PAD) [11].

To highlight the factors which effect spatial correlation the Jacobi-Anger plane

wave expansion is employed [79],

eiky·b =
∞∑

m=0

im(2m + 1)jm(k ‖y‖)Pm(cos ξ), (2.18)

where ξ = ∠(y, ψ̂) denotes the angle between y and ψ̂, jm(·) are the spherical

Bessel functions of the first kind, and Pm(·) are the Legendre polynomials of degree

m. To further separate the effects of the scattering and the sensor positioning,

consider the identity [80, p.694]

Pm(cos ξ) =
4π

2m + 1

m∑
n=−m

Y n
m(ŷ)Y n

m(ψ̂), (2.19)

where ŷ = y/‖y‖ and Y n
m(·) represent spherical harmonics [79, p.25], then the

spatial correlation (2.16) can be expressed as

ρrr′ = 4π
∞∑

m=0

m∑
n=−m

(−i)mαn
m jm(k ‖yr − yr′‖)Y n

m

(
yr′ − yr

‖yr − yr′‖
)

, (2.20)

where coefficients αn
m characterize the scattering environment,

αn
m =

∫

S2
P(ψ̂)Y n

m(ψ̂)ds(ψ̂), (2.21)

and are independent of the antenna positions. The spatial correlation (2.20) is

now composed of a summation of terms, where each term has independent factors

characterizing the scattering environment and the antenna locations. Therefore,

unlike previous models, where the antenna locations and the scattering environment

are coupled, the separate effects of antenna geometry and scattering environment
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on the channel capacity can now be studied.

Isotropic Scattering Environment

For the special case of isotropic scattering (omnidirectional diffuse fields) the power

distribution is given by the constants, P(ψ̂) = 1/2π2 and P(ψ) = 1/2π, for the

3D and 2D scattering environments respectively2. In this case, the summation

in (2.20) reduces to a single term and the 3D and 2D spatial correlation can be

shown to be:

ρ3D
rr′ = j0(k ‖yr − yr′‖), (2.22)

ρ2D
rr′ = J0(k ‖yr − yr′‖), (2.23)

which agree with the classical results [16,81], where Jn(·) are the Bessel functions of

order n, and by definition j0(·) = sinc(·). With these analytic forms for the spatial

correlation we can compute the capacity (2.5). Figure 2.3 shows the theoretical

capacity for increasing antenna numbers for a fixed aperture uniform linear (ULA)

and circular (UCA) arrays in 2D and 3D isotropic scattering with SNR of 10dB. It

is clear from comparison of the 2D and 3D capacities that any elevation spread has

little effect on the capacity of an array in the horizontal plane. This can be seen in

the insert of Fig. 2.3 where the spatial correlation for increasing spatial separation is

shown for the 2D and 3D isotropic scattering environments, here the two functions

J0(·) and j0(·) are qualitatively similar, particularly for low spatial separation.

Therefore, without loss of generality, we focus on scattering environments where

there is negligible power arriving from elevation angles.

2.2.3 Two Dimensional Scattering Environment

Consider a 2D scattering environment where the signals arrive only from the az-

imuthal plane, then y = (‖y‖ , θy) and ψ̂ = (1, ψ) in polar coordinates, and (2.18)

can be shown to reduce to,

eiky·b = J0(k ‖y‖) + 2
∞∑

m=1

imJm(k ‖y‖) cos(mξ) (2.24a)

=
∞∑

m=−∞
Jm(k ‖y‖)e−im(θy−π/2)eimψ. (2.24b)

2The 2D scattering environment is a special case of the 3D case when the signals arrive from
the azimuthal plane only.
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Figure 2.3: Capacity of 2D and 3D isotropic scattering environments for fixed
length aperture (1λ) ULA and UCA for increasing number of receive antennas.
Insert: Spatial correlation between two antennas against spatial separation for the
2D and 3D isotropic scattering environments.

Substitution of (2.24b) into (2.16) gives the spatial correlation for a 2D environment

as

ρrr′ =
∞∑

m=−∞
αmJm(k ‖yr − yr′‖)eimθrr′ , (2.25)

where θrr′ is the angle of the vector connecting yr and yr′ . The coefficients αm

characterize any possible 2D scattering environment surrounding the receiver and

are given by

αm =

∫

S1
P(ψ)e−imψdψ, (2.26)

where P(ψ) is the average angular power distribution over the unit circle S1, often

referred to as the power azimuth distribution (PAD).

Bessel functions Jn(x), |n| > 0 exhibit spatially high pass behavior, that is, for

fixed order n, Jn(x) starts small and becomes significant for arguments x ≈ O(n).

Therefore, to compute the spatial correlation for points closely located in space,

only a few terms in the sum (2.25) need to be evaluated in order to give a very good
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ψ0
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P(ψ)

σ

Figure 2.4: Multipath signal energy modelled as a non-isotropic scattering distri-
bution P(ψ) with mean AOA ψ0 and angular spread σ (defined as the standard
deviation of the distribution).

approximation [82]. Thus, closed-form solutions for the correlation can be found

provided closed-form expressions exist for the scattering coefficients (2.26). As

summarized next, for many common scattering distributions, there exists closed-

form expressions for the scattering coefficients αm and thus the capacity can be

computed for a wide range of realistic scattering environments.

2.2.4 Non-isotropic Scattering Environments

The spatial correlation as a function of receive antenna separation depends on the

scattering distribution surrounding the receiver. One of the most commonly used

distributions is the isotropic scattering model, where the power is assumed to be

uniform over all AOA [16]. However, as discussed in [83–86], and verified via ex-

perimental measurement campaigns [87–92], many realistic scattering environments

have nonuniform AOA distributions.

Non-isotropic scattering distributions model multipath as energy arriving from

a particular direction with angular spread related to the non-isotropy parame-

ter of the distribution, as shown in Fig. 2.4. The non-isotropic distributions are

characterized by the mean AOA ψo and the angular spread σ, defined as the stan-

dard deviation of the distribution. Several distributions have been proposed for

modelling the non-isotropic scattering environment [89,93–97], in the following we

outline several common distributions along with the scattering parameter effects

on spatial correlation and capacity.
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Uniform Limited Distributed Field

When the energy arrives uniformly from a restricted range of azimuth angles ±∆

around a mean AOA, ψ0 ∈ [−π, π), we have the uniform limited distribution,

P(ψ) =

{
KU, |ψ − ψ0| ≤ ∆

0, elsewhere
, (2.27)

where KU is a normalization constant such that
∫
S1 P(ψ)dψ = 1. In this case

KU = 1/2∆ and the scattering environment coefficients (2.26) are given by,

αm =
sin(m∆)

m∆
e−imψ0 , (2.28)

which gives the equivalent correlation expression to that derived in [94]. For ∆ = π

(isotropic scattering) (2.25) is given by a single term, and the correlation coefficient

becomes J0(k ‖yr − yr′‖), which agrees with earlier results.

Truncated Gaussian Distributed Field

The Gaussian distribution was proposed in [93] for modelling the distribution of

scatterers as

P(ψ) = KGe
−
�

ψ−ψ0√
2σG

�2

, ψ ∈ [−π, π), (2.29)

where σG is the standard deviation of the non-truncated distribution and is related

to the angular spread. KG is a normalization constant, which can be shown to be

KG =
1√

2πσGerf(π/
√

2σG)
, (2.30)

where erf(x) is the error function, defined as erf(x) =
∫ x

0
e−t2dt. In this case (2.26)

is given by

αm =
<

{
erf

(
π/2+imσ2

G√
2σG

)}

erf
(

π√
2σG

)
em2σG/2

e−imψ0 , (2.31)

which is well approximated by αm ≈ e−m2σG/2e−imψ0 for narrow angular spread [98].
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von-Mises Distributed Field

Another recently proposed non-isotropic scattering model is the von-Mises distri-

bution [95],

P(ψ) = Kve
κ cos(ψ−ψ0), ψ ∈ [−π, π), (2.32)

where κ ≥ 0 represents the degree of non-isotropy and is related to the angular

spread of the AOA. Here the normalization constant Kv is given by,

Kv =
1

2πI0(κ)
, (2.33)

where Im(·) is the modified Bessel function of the first kind. For κ = 0 (isotropic

scattering) the distribution becomes P(ψ) = 1/2π, while for small angular spread,

κ = ∞, the distribution is the Dirac delta function P(ψ) = δ(ψ − ψ0). For the

truncated von-Mises field the scattering environment coefficients are given by

αm =
I−m(κ)

I0(κ)
e−imψ0 . (2.34)

Truncated Laplacian Distributed Field

For some scenarios the Laplacian distribution has been proposed as a good model

of the scattering distribution [89,96]. The Laplacian distribution is defined as

P(ψ) = KLe−
√

2|ψ−ψ0|/σL , ψ ∈ [−π, π), (2.35)

where σL is the standard deviation of the non-truncated distribution and is related

to the angular spread of the AOA, and the normalization constant KL is given by

KL =
1√

2σL(1− e−
√

2π/σL)
. (2.36)

Here the scattering coefficients (2.26) can be expressed as [98],

αm =
(1− (−1)dm/2ee−π/

√
2σLFm)

(1 + σ2
Lm2/2)(1− e−π/

√
2σL)

, (2.37)

where Fm = 1 for even m, and Fm = mσ/
√

2 for odd m. In this case, the correlation

agrees with the recent derivation in [99], where the spatial correlation is derived for

a uniform circular array within a Laplacian distribution scattering environment.
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Figure 2.5: Comparison of common scattering distributions: Uniform, Gaussian,
von-Mises and Laplacian, for angular spread σ = {20◦, 30◦, 60◦}.

The above distributions are shown in Fig. 2.5 for various angle spreads σ =

{20◦, 30◦, 60◦} about the mean AOA ψ0 = 0, where the angle spread is defined

as the standard deviation of the (truncated) distribution and is related to the

nonisotropy parameter ∆, σG, κ, or σL.

We now explore the effects on spatial correlation of angle spread and mean AOA

for the above distributions. In order to compare the spatial correlation we set the

angle spread to σ = {1◦, 5◦, 10◦} for each distribution and increase the separation

distance between the antennas, located on the x-axis. The spatial correlation for

mean AOA ψ0 = 90◦ (broadside) is shown in Fig. 2.6. As shown, the spatial

correlation decreases as the antenna spacing and/or the angular spread increases3.

Here we also see that the scattering models all give similar spatial correlation for

the same angular spread, particularly for small spatial separations, indicating that

the choice of non-isotropic distribution is unimportant as the distribution variance

dominates correlation. However, due to the higher concentration of energy about

the mean for the Laplacian distribution4, for large spatial separation the Laplacian

3It is important to note that the correlation does not decrease monotonically with antenna
separation, therefore, in certain scenarios increasing the antenna spacing may actually increase
spatial correlation.

4when compared with the other models for identical angular spread



42 Introducing Space into MIMO Capacity Calculations

model generally gives higher correlation than the other three distributions for all

angular spreads considered. Finally, we observe that in all cases the von-Mises

distribution gives spatial correlation nearly identical to that of the Gaussian model.

This agrees with observations made in [95], where it was noted that the von-Mises

distribution resembles a Gaussian pdf for large κ (small angular spread) [100, p.61].

In Fig. 2.7 the spatial correlation is shown for mean AOA ψ0 = 30◦ (60◦ from

broadside). Similar results are seen as for the broadside case, however, we see

significant increase in spatial correlation for all angle spreads and distributions for

the same spatial separation as before. Therefore, due to the reduction of resolvable

angular spread at the antennas, the spatial correlation is increased as the mean

AOA moves away from the broadside angle, where the broadside angle defined as

the angle perpendicular to the line connecting the two antennas.

2.3 Capacity Results

In this section we study the spatial effects of non-isotropic scattering and antenna

geometry on the capacity of MIMO systems. Using (2.5) and (2.25) along with

the expressions for the non-isotropic scattering coefficients given in the previous

section, we compute the capacity bound for a variety scattering environments for

the uniform linear (ULA) and uniform circular (UCA) arrays. In particular, of

interest is the notion of linear in antenna number capacity scaling widely used to

advocate the use of MIMO systems [5,66], and how this is effected by non-isotropic

scattering and dense array configurations. For all scenarios we consider a signal-to-

noise ratio of η = 10dB. For comparison, the maximum (2.6) and minimum (2.7)

capacities are also shown, corresponding to no spatial correlation and full spatial

correlation capacities, respectively.

First we consider the capacity of an 8 antenna fixed aperture (length/diameter)

3.5λ array for each scattering distribution against the non-isotropy factor and for

mean AOA ψ0 = {0◦, 45◦, 90◦}. As shown in Fig. 2.8, the capacity increases for

increasing non-isotropy factor for the uniform, Gaussian, and Laplacian distribu-

tions, corresponding to an increase in angle spread surrounding the receiver. For

the von-Mises distribution, the capacity decreases as κ increases, corresponding to

a reduction in angular spread at the receiver. For all distributions, the reduction in

capacity with decreasing angular spread is most pronounced for the ULA when the

mean AOA is inline with the array (ψ0 = 0◦). However, for the UCA the capacity

is unaffected by mean AOA, advocating the use of 2D array configurations, which
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Figure 2.6: Spatial correlation between two antennas for mean AOA 90◦ (broad-
side) against spatial separation for Uniform, Gaussian, von-Mises, and Laplacian
scattering distributions and angular spreads σ = {1◦, 5◦, 20◦}.
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Figure 2.7: Spatial correlation between two antennas on the x-axis for mean AOA
30◦ (60◦ from broadside) against spatial separation for Uniform, Gaussian, von-
Mises, and Laplacian scattering distributions and angular spreads σ = {1◦, 5◦, 20◦}.
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Figure 2.8: Capacity for non-isotropic distributed scattering with mean AOA ψ0 =
{0◦, 45◦, 90◦} and increasing nonisotropy factor, for the 8 antenna ULA and UCA
of aperture width (length/diameter) 3.5λ.

are less sensitive to the mean direction of signal arrival, compared to the 1D linear

arrays.

We now consider the capacity scaling of a MIMO system as the number of re-

ceive antennas increases whilst the array aperture size remains fixed. First we con-

sider the ULA and UCA of aperture (length/diameter) D = {0.4λ, 0.6λ, 0.8λ} in an

isotropic scattering environment, shown in Fig. 2.9. It can be observed from Fig. 2.9

that the capacity scales almost linearly with the number of antennas before reduc-

ing to logarithmic growth after some saturation point. The saturation point is

clearly related to the aperture of the array for both the ULA and UCA, where

smaller apertures saturate for lower numbers of receive antennas. The capacity

scaling of the ULA and UCA is shown in Fig. 2.10 and Fig. 2.11, respectively, for

fixed aperture 4λ with angular spread σ = {1◦, 5◦, 20◦} of the various scattering

distributions. Again, for both ULA and UCA saturation is observed in the capacity

scaling, where the growth reduces from approximately linear to logarithmic after

the number of antennas reaches a distinct threshold. Note that the array aperture

is sufficiently large so any saturation is due to the reduction of angular spread at

the receiver, which is clearly seen in both figures.

To emphasis the effects of saturation with antenna numbers seen above, we can
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Figure 2.9: Capacity scaling of the ULA and UCA with fixed aperture
(length/diameter) D = {0.4λ, 0.6λ, 0.8λ} in an isotropic scattering environment.

write the capacity (2.5) as

C = Cmax + ∆C (2.38)

where Cmax is the maximum antenna capacity (2.6), and ∆C = log |Γrx|, where Γrx

is the nR × nR matrix

Γrx =




1 η
1+η

ρ12 · · · η
1+η

ρ1nR

η
1+η

ρ21 1
...

...
. . .

η
1+η

ρnR1 · · · 1




. (2.39)

Note that Γrx is a positive semi-definite matrix with 0 ≤ |Γrx| ≤ 1, thus ∆C ≤ 0,

therefore ∆C represents the loss of capacity due to antenna correlation at the re-

ceiver. The loss of capacity due to correlation is shown in Fig. 2.12 for a ULA for

fixed aperture D = {0.5λ, 1.5λ, 2.5λ, 3.5λ, 4.5λ} in an isotropic scattering environ-

ment. Here the distinct saturation point in antenna number is clearly visible with

increasing aperture. Likewise, the loss in capacity is significant beyond an antenna

saturation point for increasing angular spread as shown in Fig. 2.13 for a ULA of
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Figure 2.10: Capacity scaling of the broadside uniform linear array with fixed aper-
ture 4λ for angular spread σ = {1◦, 5◦, 20◦} of the various scattering distributions.
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Figure 2.11: Capacity scaling of the UCA with fixed aperture 4λ for angular spread
σ = {1◦, 5◦, 20◦} of the various scattering distributions.
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fixed aperture 4λ.

Using a singular value decomposition of the channel matrix, the capacity of

a MIMO system can be shown to be equivalent to the sum of the capacities of

min(nT, nR) subchannels, each with independent power gains corresponding to the

eigenvalues of the channel matrix product HH† [7]. The subchannel gains depend

on the correlation between channel branches, and as the correlation increases some

subchannels have gains too small to convey information at any significant rate [65].

Therefore, as seen here, as the number of antennas increases for a fixed aperture,

or angular spread, due to increased channel branch correlation there exists a sat-

uration point at which the subchannels generated by any addition antennas have

negligible gains and do not increase the capacity, other than logarithmic array gain.

This saturation effect has significant implications for realizable MIMO systems,

as the saturation point gives the optimal number of antennas required to maximize

capacity, after which there are negligible gains. Asymptotic results for the fixed

aperture ULA in isotropic scattering are studied in [101], with identical independent

results in [102]. However, the saturation point for fixed aperture arrays has not been

addressed so far, except for the special case of the UCA [103]. Promising results

from a spatial model presented in [104] indicate the throughput of a MIMO system

is limited by the radius of the region containing the antenna arrays, agreeing with

observations in this chapter. Likewise, to the authors’ knowledge, no analytical

results exist for the capacity scaling saturation due to insufficient angular spreads,

although the effect on capacity due to limited angular spread at the transmitter

has been reported in [65], and observed elsewhere, e.g. [105], via simulation.

2.4 Summary and Contributions

In i.i.d. Rayleigh fading channels the capacity of a multi-antenna system has been

shown to grow linearly with antenna numbers. However, in realistic propagation

environments, the fading is correlated due to insufficient antenna spacing or an-

gular spread, and the capacity is often significantly lower than that predicted for

i.i.d. fading. This chapter has investigated the capacity of MIMO systems for

realistic array sizes and scattering environments.

Some specific contributions made in this chapter are:

1. By assuming a sufficient number of sufficiently separated transmit antennas

a closed-form expression for the capacity of a MIMO random fading channel
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is derived.

2. Using a novel channel model the separate effects of the scattering environment

and antenna array configuration can be seen on the spatial correlation at the

receiver, allowing for capacity evaluation of systems for a wide variety of

scattering environments and antenna placement.

3. It is shown that the angular spread surrounding the receiver dominates the

spatial correlation and thus capacity, rather than the choice of scattering

distribution. However, this may not hold for multi-modal distributions which

were not discussed here, but are fully captured by the analytical framework.

4. For 1D arrays it was observed that the mean AOA has a significant impact

on the capacity of the system, advocating the use of 2D arrays, which are

less sensitive to the mean direction of signal arrival.

5. The capacity was shown to suffer from a saturation effect in the number of

antennas for a fixed angular spread or array aperture. This saturation point,

at which the capacity scaling is reduced from linear to logarithmic increase

with increasing antenna numbers, is an important factor in the design of

practical MIMO systems and is further investigated in Chapter 3.





Chapter 3

Saturation Effects of Spatially

Constrained MIMO Channels

MIMO wireless systems have recently received considerable attention, due in part

to the outstanding capacity gains achievable when the channel offers independent

fades between antennas. However, the capacity of a wireless fading MIMO system

is significantly reduced as the channel matrix elements become correlated.

In practice, the physical size of the antenna array is limited due to physical con-

straints imposed by its location and application, for example, the ever decreasing

size of mobile handsets places constraints on the size of the antenna array em-

ployed. This aperture constraint, along with any limited angular spread surround-

ing the antenna array, significantly increases the correlation between antennas as

the number of antennas within the aperture is increased. Although several works

have considered the impact of correlation on capacity using correlation models

(e.g., [10, 65, 71, 72]), the effects of the physical constraints, such as aperture size

and non-isotropic scattering, have not been explicitly addressed.

Recent work studying constrained linear arrays [101,102,106] has given impor-

tant insights into the capacity limits for large numbers of antennas. However, from

a practical perspective, it is desirable to maximize capacity for a minimum of cost,

therefore the capacity behavior for a finite number of antennas is of considerable

importance.

In this chapter the theoretical capacity performance of spatially constrained

channels is considered for a finite number of antennas. A spatially constrained

channel has physical constraints, such as aperture size and non-isotropic scattering,

which limit its performance when compared to unconstrained channels, such as the

i.i.d. Rayleigh fading model.

51
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3.1 Eigen-analysis of MIMO Capacity

Consider a single-user narrowband flat fading wireless communication system, with

nT transmit antennas and nR receive antennas. It is assumed the transmitted signal

vector is composed of statistically independent equal power components, each with

a Gaussian distribution, and the channel is known at the receiver. Consider the

case of a large number of sufficiently separated transmit antennas, such that the

transmit branches are uncorrelated1, then the ergodic capacity of such a system

is given by (2.5). Expanding the determinant by the product of its argument’s

eigenvalues, the capacity can be expressed as

C = log |InR
+ ηR| (3.1a)

= log
K−1∏
n=0

(1 + ηλn) (3.1b)

=
K−1∑
n=0

log(1 + ηλn), (3.1c)

where K = rank(R) ≤ nR, and λn are the rank and eigenvalues of the spatial cor-

relation matrix R, respectively. Since the capacity of a single-input single-output

(SISO) channel is given by log(1+α), where α is the SNR at the receiver, then the

capacity (3.1c) is equivalent to the contribution of K parallel SISO subchannels,

each with independent gain corresponding to the eigenvalues of the correlation ma-

trix R. Therefore, the properties of the set {λn} play a vital role in the achievable

capacity for a spatially constrained channel.

For nR antennas
∑

n λn = trace(R) = nR, hence the maximum of (3.1c) will

occur for K = nR independent equal gain sub-channels, λn = 1,∀n, giving linear

growth in capacity with increasing nR,

Cmax = nR log(1 + η). (3.2)

In contrast, minimum capacity will occur when all the power is used on a single

sub-channel, i.e., λ0 = nR, and λn = 0, ∀n 6= 0, corresponding to fully correlated

antennas. In this case the capacity is given by

Cmin = log(1 + nRη), (3.3)

1E
{
hrthrt′

}
= 0,∀ t 6= t′, where hrt is the channel gain from the t-th transmit antenna to the

r-th receive antenna.
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Figure 3.1: Example of a UCA of radius r0, where d` denotes the distance between
any antenna and its `-th neighbor in a clockwise or anticlockwise direction.

which grows logarithmically with nR. Therefore, the capacity still increases with

antenna number even when the antennas are correlated, this array-gain effect is

due to the assumption of ideal antennas and independent noise samples, and is

considered in detail in Section 3.3.4.

For a spatially constrained channel, as the number of antennas is increased in

a fixed aperture, with restricted scattering angular spread, the correlation between

antennas will increase. This increase in spatial correlation will limit the number

of significant eigenvalues, and therefore limit the otherwise linear capacity growth

with increasing numbers of antennas. As more antennas are placed in the aperture,

they will be highly correlated with the other antennas and therefore the logarithmic

array-gain effect will dominate the capacity growth. Therefore, from a design per-

spective, of considerable interest is the saturation point in the number of antennas

at which the capacity scaling is reduced to logarithmic with increasing number of

antennas.

Section 3.2 begins by considering the simple case a UCA of fixed aperture within

an isotropic scattering environment. This case provides insights into the capacity

scaling of spatially constrained arrays via the nice property that the corresponding

correlation matrix is symmetrically circulant, and gives closed form expressions for

the eigenvalues. This result is then generalized to arbitrary arrays and general

scattering environments in the remainder of the chapter.
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3.2 Uniform Circular Array

Consider a UCA with radius r0 and nR antennas. Denote the set {d`}nR−1
`=0 as the

distance between any antenna and the other nR − 1 antennas in the array (in a

clockwise or anticlockwise direction), as shown in Fig. 3.1, with d0 = 0 being the

distance between the antenna and itself, then

d` = 2r0 sin(π`/nR). (3.4)

For the special case of scattering over all angles in the plane, we have a 2D isotropic

diffuse field at the receiver and the spatial correlation between any element on the

UCA and its `-th neighbor is given by [16]

ρ` = J0(k d`), (3.5)

where J0(·) are Bessel functions of the first kind, and k = 2π/λ is the wavenumber.

Due to UCA symmetry, for ` > 0, ρ` = ρnR−`, and the correlation matrix becomes

a nR × nR symmetric circulant matrix,

R = Circ
[
ρ0, ρ1, . . . , ρdnR−1

2
e, ρbnR−1

2
c, . . . , ρ2, ρ1

]
, (3.6)

where d·e and b·c are the ceiling and floor operators respectively, and

Circ [x1, x2, . . . , xN ] ,




x1 x2 · · · xN

xN x1 · · · xN−1

...
...

. . .
...

x2 x3 · · · x1




, (3.7)

defines the circulant matrix.

3.2.1 Eigenvalues of Spatial Correlation Matrix R

The eigenvalues of the symmetric circulant matrix are given by the discrete Fourier

transform of the first row [107], therefore the eigenvalues of the nR× nR matrix R

are given by the simple closed form expression

λn =

nR−1∑

`=0

ρ` ei2πn`/nR . (3.8)
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For a UCA in a 2D isotropic diffuse field the correlation coefficients are real and

symmetric, hence (3.8) represents the Discrete Cosine Transform (DCT) of the

spatial correlation coefficients,

λn =

nR−1∑

`=0

ρ` cos (2πn`/nR) . (3.9)

Since R is a positive-semidefinite Hermitian matrix and with the properties of the

DCT it is easy to show the following:

λn ∈ R, (3.10)

λn ≥ 0, (3.11)

λnR−n = λn = λ−n , n > 0, (3.12)

that is, the eigenvalues are real, non-negative and symmetric.

The capacity saturation of the UCA observed in Chapter 2.3, where the capac-

ity growth was reduced from approximately linear to logarithmic with increased

antenna numbers, suggests there is fixed limit to the number of significant eigen-

values of R which is dependent on the radius of the array. Note, as discussed

in Chapter 2, the Bessel function J0(·) is qualitatively similar to the spherical

Bessel function j0(·) ≡ sinc(·), which has a bandlimited Fourier transform. Hence,

since (3.8) is the discrete Fourier transform of the correlation function J0(kd`), one

would expect to observe bandlimited eigenvalues, that is, λn ≈ 0 for |n| ≥ N for

some integer N < nR. Therefore, in the following the properties of |λn| are explored

for increasing n.

Substitution of (3.5) and (3.4) into (3.9) gives

λn =

nR−1∑

`=0

J0(2kr0 sin (π`/nR)) cos (2nπ`/nR) , (3.13)

letting ξ = π`/nR and assuming a large number of antennas, we can approxi-

mate (3.13) with the integral

λn ≈ nR

π

∫ π

0

J0(2kr0 sin ξ) cos (2nξ) dξ, (3.14)
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Figure 3.2: High pass nature of the Bessel functions Jn(z), for n = {5, 50, 500}
versus argument z in logarithmic scale.

for n ∈ [0, d(nR − 1)/2e]. Using the identity [108, p.32]

J2
n(z) =

1

π

∫ π

0

J0(2z sin ψ) cos(2nψ)dψ, (3.15)

then the eigenvalues can be expressed as

λn ≈ nRJ2
n(kr0), (3.16)

which is asymptotically equal to (3.13) with increasing antenna number.

Bessel functions Jn(z), |n| > 0 exhibit spatially high pass behavior, that is, for

fixed order n, Jn(z) starts small and becomes significant for arguments z ≈ O(n),

as shown in Fig. 3.2. Therefore, for a fixed argument z, the Bessel function Jn(z)

is approximately zero for all but a finite set of low order |n| ≤ N , thus, giving a

finite limit to the number of significant eigenvalues (3.16). Consider the following

bound [109, p.362] on the bessel functions for z, n ≥ 0

|Jn(z)| ≤ zn

2nΓ(n + 1)
, (3.17)

where Γ(·) is the Gamma function, then, since 2nΓ(n + 1) increases significantly

faster than the exponential zn, (3.17) will rapidly approach 0 for some n > 0 for
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which 2nΓ(n + 1) > zn. Using a relaxed Stirling lower bound2 [110] for Γ(n + 1),

we see that Bessel functions Jn(z) ≈ 0 for orders n > ez/2.

Asserting that n must be an integer, and given the vanishing nature of the

Bessel functions, define an eigenvalue threshold

N , dπer0/λe, (3.18)

such that the eigenvalues λn ≈ 0 for n > N . Therefore, given the symmetric nature

of the eigenvalues (3.12), for any number of antennas, nR ≥ 2N +1, there is a finite

set of 2N + 1 non-vanishing eigenvalues,

λ = {λ−N , λ−N+1, · · · , λ0, · · · , λN−1, λN}, (3.19)

whose number of elements grows only with the radius of the array, and is indepen-

dent on the number of antennas.

Therefore, for a UCA in a 2D isotropic diffuse field there is a finite set of sig-

nificant spatial correlation matrix eigenvalues, where the set size increases linearly

with the radius of the array and is independent of the number of antennas. Fig-

ure 3.3 shows the eigenvalues of the spatial correlation matrix R for various UCA

radii in a 2D isotropic diffuse field. Shown as a solid black line, it can be seen that

the theoretical eigenvalue threshold defines the boundary between the significant

and vanishing eigenvalues for each array radius.

3.2.2 Capacity Scaling Limits

Due to the dependence of (3.1c) on the eigenvalues of the spatial correlation matrix

R we see that the eigenvalue threshold derived in the previous section has signifi-

cant implications on the capacity growth with increasing antenna numbers. In this

section we show that this fixed set size of significant eigenvalues, regardless of the

the number of antennas, leads to an antenna saturation effect on MIMO capacity.

Consider a UCA array with nR antennas, then given the symmetric nature of

the eigenvalues (3.12) the capacity (3.1c) can be written as

C =

d(nR−1)/2e∑

n=−b(nR−1)/2c
log (1 + ηλn) . (3.20)

For a UCA of radius r0 placed in a 2D isotropic diffuse field, then from (3.19)

2Γ(z + 1) >
√

2πz zz e−z > zz e−z, z > 0
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Figure 3.3: The eigenvalues of the spatial correlation matrix for various UCA radii
in a 2D isotropic diffuse scattering field. The dark solid line represents the theoret-
ical eigenvalue threshold, and clearly shows the boundary between the significant
and vanishing eigenvalues of the spatial correlation matrix for each array radius.

and (3.18), for nR ≥ 2N + 1 the channel capacity given by (3.20) is well approxi-

mated using the set of 2N + 1 non-vanishing eigenvalues, that is,

C ≈
N∑

n=−N

log (1 + ηλn) . (3.21)

Now consider two UCAs of equal radius r0 with antenna numbers nR1, nR2 ≥
2N + 1. Denote the eigenvalues of the spatial correlation matrices of the UCAs

with nR1 and nR2 antennas as λ
(nR1)
n and λ

(nR2)
n , respectively, then from (3.16) we

have the following relationship between the significant eigenvalues of these arrays,

λ
(nR1)
n

nR1

≈ λ
(nR2)
n

nR2

, (3.22)

with the approximation asymptotically equal with the number of antennas. Define

nN , 2N + 1, (3.23)

as the minimum number of antennas required to generate the full set of non-zero
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eigenvalues (3.19), then letting nR1 = nR and nR2 = nN we have

λn ≈ nR

nN

λ(nN )
n , (3.24)

where λ
(nN )
n are the eigenvalues of the nN × nN spatial correlation matrix of the

nN antenna UCA. Thus the non-vanishing eigenvalues for any UCA of radius r0

with number of antennas nR ≥ nN are simply scaled versions of the eigenvalues

generated by an array with nN antennas. Substituting (3.24) into (3.21) gives the

capacity as

C ≈
N∑

n=−N

log

(
1 + nR η

λ
(nN )
n

nN

)
, nR ≥ nN , (3.25)

which grows logarithmically with antenna number nR. Therefore, the capacity gain

is reduced to at most logarithmic growth once the number of antennas reaches a

saturation point given by nN = 2N + 1. Let η̂ = (nR/nN)η be the scaled average

SNR at each antenna, then (3.25) shows that the effect of any additional antennas

above the saturation point is an increase in the average SNR, or in other words,

an array gain effect due to the assumption of independent noise at each antenna.

Therefore, for a MIMO system with a UCA in a 2D isotropic scattering environ-

ment there exists a saturation point in the number of antennas, which is dependent

only on the radius of the array, after which the addition of more antennas gives

diminishing (logarithmic) capacity gains. It can be observed from Fig. 3.4 that

the capacity (3.1c) does indeed increase approximately with the maximum theo-

retical capacity (3.2) up until the theoretical saturation point (3.23), after which

logarithmic capacity scaling occurs for increasing antenna number.

The results presented in this section are of considerable importance in the design

of MIMO systems, where it is desirable to maximize the capacity at a minimum

cost. However, although common, the UCA is only one of many array geometries

possible for a given region of space. Also of interest is the more realistic case of

of non-isotropic scattering environments, which will impact on the performance of

the MIMO system.
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Figure 3.4: Capacity of MIMO systems for various antenna numbers of a UCA
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3.3 Arbitrary Arrays in General Scattering En-

vironments

Consider the 2D scattering environment shown in Fig. 3.5, where nR receiver an-

tennas, located at yr = (‖yr‖ , θr) in polar coordinates, are constrained within

a circular receiver aperture of radius r0. Let gt(ψ) represent the effective random

complex gain of the scatterers for a transmitted signal xt arriving at the receiver ar-

ray from direction ψ via any number of paths through the scattering environment.

The region of radius rS encompassing the receiver aperture contains no scatterers

and is assumed large enough such that any scatterers are farfield to all receiver

antennas. The noiseless received signals at antenna r located at yr is then given

by

zr =

nT∑
t=1

xt

∫

S1
gt(ψ̂)e−ikyr·b dψ (3.26a)
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=

nT∑
t=1

hrtxt, (3.26b)

where S1 the 1-sphere or unit circle, ψ̂ is a unit vector in the direction ψ, and

define

hrt ,
∫

S1
gt(ψ̂)e−ikyr·b dψ, (3.27)

as the random complex channel gain from the t-th transmitter to the r-th receiver.

3.3.1 Spatial Correlation Matrix Decomposition

The normalized spatial correlation function between the complex envelopes of two

received signals zr and zr′ located at positions yr and yr′ , respectively, was shown

in Chapter 2 to be given by

ρrr′ =

∫

S2
P(ψ̂)e−ik(yr−yr′ )·b ds(ψ̂), (3.28)

where P(ψ̂) is the power azimuth distribution (PAD) describing the scattering

environment surrounding the receiver.

Consider the 2D Jacobi-Anger modal expansion of plane waves [79]

eiky·b =
∞∑

m=−∞
Jm(k ‖y‖)e−im(θy−π/2)eimψ, (3.29)

then the spatial correlation (3.28) can be expressed as

ρrr′ =
∞∑

m=−∞

∞∑

m′=−∞
Jm(yr)Jm′(yr′)

∫

S1
P(ψ)e−i(m−m′)ψdψ, (3.30)

where

Jm(yr) , Jm(k ‖yr‖)e−im(θr−π/2), (3.31)

is the spatial-to-mode function, which maps the aperture sampling point yr to the

m-th mode of the expansion (3.29).

As the scattering gain function gt(ψ) is periodic with ψ, it is natural to expand
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Figure 3.5: Two dimensional scattering model for a flat fading MIMO system. gt(ψ)
represents the effective random complex gain of the scatterers for a transmitted
signal xt arriving at the receiver array from direction ψ via any number paths
through the scattering environment. The receiver aperture of radius r0 contains all
receiver antennas, and is contained within a scatterer free region whose radius rS is
assumed large enough such that any scatterers are farfield to all receive antennas.
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it using a modal basis function expansion

gt(ψ) =
∞∑

m=−∞
at,m eimψ, (3.32)

where the coefficients

at,m =

∫

S1
gt(ψ) e−imψdψ, (3.33)

parameterize the random scattering environment for the t-th transmitter. Define

the normalized correlation between the m and m′ modes at the receiver as3

γm,m′ =

nT∑
t=1

E {at,mat,m′}
nT∑
t=1

√
E {at,mat,m}E {at,m′at,m′}

. (3.34)

Assuming a zero-mean uncorrelated scattering environment, the covariance be-

tween receiver modes m and m′ for the t-th transmitter is given by

E {at,mat,m′} =

∫

S1
Gt(ψ) e−i(m−m′)ψdψ, (3.35)

where Gt(ψ) = E
{|gt(ψ)|2}. Therefore, the modal correlation (3.34) is given by

γm,m′ = γm−m′ =

∫

S1
P(ψ)e−i(m−m′)ψdψ, (3.36)

where P(ψ) is the power azimuth distribution (2.17). Note that the modal corre-

lation expression is identical to the scattering environment coefficients αn (2.21),

for n = m − m′, therefore, closed-form expressions for (3.36) can be found in

Section 2.2.4 for most common non-isotropic scattering distributions.

From the high-pass nature of Bessel functions discussed in the previous section,

the spatial-to-mode functions Jm(yr) ≈ 0 for m > dπe ‖yr‖ /λe. Therefore, given

that |γm−m′| ≤ 1, ∀m, we can define

M , dπer0/λe, (3.37)

3It is important to note the distinction between the modal correlation γm,m′ due to scattering,
and the antenna correlation ρr,r′ due to antenna placement and scattering.
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such that the spatial correlation (3.30) is well approximated by the truncated series

ρrr′ =
M∑

m=−M

M∑

m′=−M

Jm(yr)Jm′(yr′)γm−m′ , (3.38)

for every pair of antennas within the receiver aperture of radius r0. Note that

the truncation arises from a more general truncation property of the plane wave

expansion (3.29) and is discussed further in Chapter 4. For now, it is sufficient

to state that the truncation error is small and decreases at least exponentially as

further terms are taken.

Using (3.38) the spatial correlation matrix R can now be decomposed into the

matrix product

R = JΓJ †, (3.39)

where J is the nR × (2M + 1) aperture sampling matrix,

J =




J−M(y1) J−M+1(y1) · · · JM(y1)

J−M(y2) J−M+1(y2) · · · JM(y2)
...

...
. . .

...

J−M(ynR
) J−M+1(ynR

) · · · JM(ynR
)




, (3.40)

which describes the sampling of the receiver aperture by the antennas, and Γ is

the (2M + 1)× (2M + 1) modal correlation matrix,

Γ =




γ0 γ1 · · · γ2M

γ−1 γ0 · · · γ2M−1

...
...

. . .
...

γ−2M γ−2M+1 · · · γ0




, (3.41)

which characterizes the scattering environment surrounding the receiver aperture.

The correlation matrix decomposition (3.39) emphases the distinct spatial effects

on correlation, and ultimately capacity, of the antenna placement and the scattering

environment.

The capacity (3.1a) can now written as

C = log
∣∣InR

+ ηJΓJ †∣∣ (3.42a)
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=
K−1∑
n=0

log(1 + ηλn), (3.42b)

where λn and K are the eigenvalues and rank, respectively, of the spatial correlation

matrix product R = JΓJ †, with

K = min{rank(J), rank(Γ)} (3.43a)

≤ min{nR, 2M + 1}. (3.43b)

Therefore, due to the linear capacity growth depending on a full rank correlation

matrix, for any nR > K the capacity scaling will no longer remain linear with

increasing numbers of antennas due to insufficient eigen-channels. There are two

cases in which the rank of R may be reduced; a loss in rank of the aperture sampling

matrix J due to the aperture size and/or antenna placement, or, a loss in modal

correlation matrix Γ rank due to low angular spread surrounding the receiver.

3.3.2 Capacity Limits: Constrained Aperture

To isolate the effects of spatially constraining the array from those of angular

spread, we assume the scatterers are uniformly distributed and generate an isotropic

diffuse field (often referred to as a rich scattering environment) corresponding to

independent modes γm−m′ , with modal correlation matrix Γ = I2M+1. In this case

the capacity (3.42b) is given by

C = log
∣∣InR

+ ηJJ †∣∣ , (3.44)

where the (r, r′)-th element of the aperture sampling matrix product JJ † is given

by

JJ †|rr′ =
M∑

m=−M

Jm(yr)Jm(yr′) (3.45a)

=
M∑

m=−M

Jm(k ‖yr‖)Jm(k ‖yr′‖)e−im(θr−θr′ ) (3.45b)

= J0(k ‖yr − yr′‖), (3.45c)

where (3.45c) follows from (3.45b) from a special case of Gegenbauer’s Addition

Theorem [109, pp. 363]. For a rich scattering environment J0(k ‖yr − yr′‖) gives

the spatial correlation between the complex envelopes of the received signals at
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antenna positions yr and yr′ [16]. Therefore the capacity growth of (3.44) will be

maximized provided all the antennas can be placed within the region such that the

spatial correlation between any antenna pair is zero.

Assuming we can place all nR antennas such that the spatial correlation is zero

between all the antennas, then JJ † = InR
and the capacity is given by

C = nR log(1 + η), (3.46)

which grows linearly with the number of antennas. However, as shown next, if

nR ≥ rank(J) then the capacity scaling is reduced to logarithmic growth, or an

array gain effect, with increasing numbers of antennas.

Let µn, n = {0, 1, . . . , nR−1} denote the singular values of the aperture sampling

matrix J , ordered such that µn ≥ µn+1, then we can express the capacity (3.44) as

C =

nR−1∑
n=0

log
(
1 + ηµ2

n

)
. (3.47)

Consider two apertures with equal radii r0, with antenna numbers nR1, nR2 ≥
2M +1. Denoting {µn,nR1

} and {µn,nR2
} as the set of singular values of the aperture

sampling matrix for each aperture, and observing that
∑

n µ2
n = trace(JJ †) = nR,

then

1

nR1

nR1−1∑
n=0

µ2
n,nR1

=
1

nR2

nR2−1∑
n=0

µ2
n,nR2

. (3.48)

By definition, there are only rank(J) non-zero singular values (corresponding to

the 2M +1 independent receiver modes), therefore, assuming we can place rank(J)

antennas within the aperture of radius r0 such that spatial correlation between each

antenna is zero, giving constant and equal non-zero singular values, we have

µ2
n,nR1

nR1

=
µ2

n,nR2

nR2

, n ∈ [0, 2M ]. (3.49)

Therefore, letting nR1 = nR ≥ 2M + 1, and nR2 = nM , 2M + 1, we have

µ2
n,nM

= 1, ∀n and (3.47) becomes

C = nM log

(
1 + nR

η

nM

)
, nR ≥ nM , (3.50)

which scales logarithmically with nR, hence the maximum capacity growth is re-
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duced from linear to logarithmic once the number of antennas reaches the saturation

point nM = 2M + 1, which scales linearly with the radius of the aperture.

Therefore, for a receiver aperture of radius r0, define

nr0 , 2dπer0/λe+ 1, (3.51)

as an aperture saturation point, then the maximum achievable capacity for nR

antennas is given by

Cmax(nR, r0) =

{
nR log(1 + η) nR < nr0

nr0 log(1 + nRη/nr0) nR ≥ nr0

. (3.52)

This represents the maximum capacity for a fixed aperture region in space when the

antennas (up to nr0) are placed optimally. Once the number of antennas reaches

the saturation point nr0 , the addition of any more antennas, regardless of their

placement, provides only array gain capacity growth.

The theoretical maximum capacity Cmax(nR, r0) is shown in Fig. 3.6 for aper-

tures of radius r0 = {0.1λ, 0.7λ} in an isotropic scattering environment for an

increasing number of antennas. The ULA of width 2r0, and UCA of radius r0,

are also shown. As expected, both the ULA and UCA do not optimally place the

antennas for the given aperture, and as such the capacity is lower than the the-

oretical maximum capacity. These array geometries do not utilize the full set of

independent eigen-modes of the region, as shown by the lower saturation points

and capacity.

Spatially Constrained Uniform Linear Arrays

For the special case of the commonly employed ULA, array symmetry gives Jm(yr) =

J−m(yr′), where yr = (‖yr‖ , 0) and yr′ = (‖yr′‖ , π) are the bnR/2c antenna lo-

cations symmetric about the array origin. Therefore, there are at most M + 1

independent columns of J , and hence for the ULA of length d0 the aperture satu-

ration point is given by

nULA
d0

, dπed0/2λe+ 1. (3.53)

It can be seen from Fig. 3.6 that the saturation point does give a good indication of

where the capacity scaling of the ULA changes to logarithmic growth with increas-

ing antenna numbers. However, (3.53) is derived under the assumption there is no
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Figure 3.6: Theoretical maximum capacity Cmax(nR, r0) for apertures of radius
r0 = {0.1λ, 0.7λ} in an isotropic scattering environment for an increasing number
of antennas. Vertical dashed lines indicate the theoretical antenna saturation point
for each aperture size. Shown also is the capacity of the ULA and UCA within the
same sized apertures.

correlation between the antenna elements, therefore, due to spatial correlation of

the antennas, the capacity growth will most likely saturate before nULA
d0

. This result

does however improve on the asymptotic studies of fixed aperture ULAs in [102]

and [101], by giving a finite limit to number of antennas at which the addition

of further antennas gives diminishing capacity gains. Note that (3.53) applied to

the simulation scenarios presented in [101, 102] corresponds to the knee point in

capacity growth, where the capacity growth goes from approximately linear to log-

arithmic with increasing numbers of antennas, which is not discussed within those

references but is of considerable interest in practical MIMO systems.

3.3.3 Capacity Limits: Limited Angular Spread

To isolate the effects of scattering environment on the capacity, we assume nR =

2M + 1 antennas are optimally placed (perfect spatial to mode coupling) within

the receive region of fixed radius r0, then from the reciprocity identity |I + AB| =
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|I + BA|, the capacity (3.42b) can be expressed as

C = log
∣∣InR

+ ηJ †JΓ
∣∣ . (3.54)

In the case of optimal antenna placement J †J = InR
and the aperture sampling

matrix J is unitary, thus

C = log |InR
+ ηΓ| (3.55a)

=
K−1∑
n=0

log(1 + ηλn), (3.55b)

where K = rank(Γ) ≤ nR = 2M + 1.

With no closed-form expressions available, the analytical computation of the

eigenvalue sequence {λn} for finite numbers of antennas is difficult, other than

solving the eigenvalue problem of the Toeplitz matrix Γ. However, using the

asymptotic equivalence between Toeplitz and circulant matrices [111], it can be

shown that as nR → ∞ then λn/nR = εn, where εn is a constant independent of

nR [102,112]. Therefore, since a reduction in angular spread will decrease rank(Γ)

due to increased modal correlation, for large nR the capacity (3.55) will exhibit

logarithmic growth with increasing numbers of antennas.

Figure 3.7 shows the eigenvalues of the modal correlation matrix Γ for various

angular spread ∆ of a uniform limited distributed scattering environment. As

expected, there exists a definite threshold between the vanishing and significant

eigenvalues for each angle spread. Shown as a solid black line, an empirically

estimated linear eigenvalue threshold of 2dM∆/πe + 1, gives a good estimate of

the boundary between the significant and vanishing eigenvalues for each angular

spread, i.e., λn ≈ 0 for n > 2dM∆/πe+ 1.

Therefore, for a receiver aperture of fixed radius R with angular spread ∆,

define

n∆ , 2d∆eR/λe+ 1, (3.56)

as an angular saturation point, then the maximum achievable capacity for nR an-

tennas is given by

Cmax(nR, ∆) =

{
nR log(1 + η) nR < n∆

n∆ log(1 + nRη/n∆) nR ≥ n∆

. (3.57)
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Figure 3.7: The eigenvalues of the modal correlation matrix for various angular
spreads. The dark solid line represents the estimated eigenvalue threshold, and
clearly shows the boundary between the significant and vanishing eigenvalues of
the modal correlation matrix for each angular spread.

The theoretical maximum capacity Cmax(nR, ∆) is shown in Fig. 3.8 for aperture

of fixed radius R = 2.5λ for an increasing number of antennas. The ULA of width

2R, and UCA of radius R, are also shown, note that the size of the aperture is

large enough that any saturation effects are due only to insufficient angular spread.

Again, both the ULA and UCA do not optimally place the antennas for the given

aperture, and as such the capacity is lower than the theoretical maximum capacity.

Note, that if the aperture is allowed to grow with antenna number such that

all nR antennas can be placed optimally, then the capacity will scale linearly with

increasing numbers of antennas. However, the rate of capacity increase is reduced

as the angular spread is made smaller, as shown in Fig. 3.9, due to the angular

saturation point being a function of both angular spread and aperture radius.

This unconstrained result agrees with linear capacity scaling studied in [10] for

unconstrained grid-like arrays, where instead of correlation due to reduced angular

spreads, the spatial correlation due to fixed antenna placement reduces the growth

rate.
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Figure 3.8: Theoretical maximum capacity Cmax(nR, ∆) for aperture of fixed radius
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3.3.4 Fixed Received Power

Consider the channel model (3.26b), then the total received power is given by

PR =

nR∑
r=1

E
{|zr|2

}
(3.58a)

=

nR∑
r=1

nT∑
t=1

σ2
T

∫

S1
E

{|gt(ψ)|2} dψ (3.58b)

= nRσ2
HPT, (3.58c)

where σ2
T = PT/nT is the power per transmit antenna, and it is assumed the channel

variances σ2
H = E

{|hrt|2
}

=
∫
S1 E

{|gt(ψ)|2} dψ are constant, usually normalized

such that σ2
H = 1. Hence the total received power increases linearly with the

number of receive antennas nR, therefore giving at least logarithmic capacity growth

with increasing numbers of antennas, regardless of the antenna placement within

the aperture. This logarithmic capacity growth, or array-gain, with increasing

numbers of antennas is plausible in the case of unconstrained arrays, where the

antennas are sufficiently separated. However, if the antennas are constrained within

an aperture of fixed size, then the assumption of unlimited total power is arguable.

An antenna receives power proportional to its effective area [113], therefore the

total power collected by an ensemble of isolated antennas will scale linearly with the

number of antennas. However, for closely spaced antennas the effective areas will

overlap and the total power collected will be less than the sum of powers collected

by isolated antennas.

In [106] it is proposed that the total received power should remain a constant for

a given region, regardless of the number of antennas within. Therefore, by scaling

the channel variances to E
{|hrt|2

}
= σ2

H/nR the total received power remains

bounded as the number of antennas is increased. This normalization is equivalent

to scaling the transmitted power by 1/nR, thus the average SNR at each receive

antenna is η/nR, where η = PT/σ2 is the average SNR of the unnormalized case.

The normalized capacity is then given by

C = log

∣∣∣∣InR
+

η

nR

JΓJ †
∣∣∣∣ (3.59a)

=
K−1∑
n=0

log

(
1 +

η

nR

λn

)
. (3.59b)

where K = min{rank(J), rank(Γ)}, and {λn} are the eigenvalues of the matrix
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product JΓJ †.

In the previous sections, it was shown that for nR →∞ the ratio λn/nR = εn,

where εn is a constant independent of nR, hence, the capacity (3.59) will converge

to a constant for large nR. Therefore, the capacity of this normalized system will

be independent of any array gain effects, giving more realistic capacity scaling

expressions for spatially constrained arrays with increasing numbers of antennas.

Fundamental Capacity Limit

For an aperture of fixed radius r0 = R there are nr0 possible eigen-modes, or

orthogonal sub-channels with gains large enough to convey information at a signif-

icant rate. However, since the effect of angular spread ∆ < π is to correlate the

modes, the number of orthogonal channels is reduced to min{nr0 , n∆} = n∆, since

nr0 ≥ n∆, with equality for ∆ = π.

Therefore, for an aperture of radius r0 with scattering angular spread of ∆

define

nsat(r0, ∆) , 2d∆er0/λe+ 1, (3.60)

as the antenna saturation point, whereby further increases in the number of an-

tennas fails to give further capacity gains. Therefore, the theoretical maximum

capacity for nR antennas within the aperture is given by

Cmax(nR, r0, ∆) =

{
nR log(1 + η/nR) nR < nsat

Csat nR ≥ nsat

, (3.61)

where

Csat(r0, ∆) , nsat log(1 + η/nsat), (3.62)

is the maximum capacity for an aperture of radius r0 with scattering angular spread

∆, which in theory, can be achieved with a minimum of nsat antennas. Note that

Cmax grows logarithmically with increasing numbers of antennas up to the constant

Csat for nR = nsat antennas, where the addition of more antennas (regardless of

placement) gives no further increase in capacity.

Consider the identities ln(1 + x) ≤ x, and ln(1 + x) ≥ x− x2/2, then

Csat(r0, ∆) ≤ η

ln 2
, (3.63)
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Csat(r0, ∆) ≥ η

ln 2
− 1

2 ln 2

(
η

nsat

)2

, (3.64)

and hence for large radius ro → ∞ (i.e., nsat → ∞), the normalized capacity

converges to an upper limit

lim
r0→∞

Csat(r0, ∆) = Climit , η

ln 2
. (3.65)

Due to the assumption of optimally placed (uncorrelated) antennas within a large

aperture, the capacity limit corresponds to the limit of the normalized capacity of

the i.i.d. Rayleigh fading case for nT, nR →∞, as shown in [102]. Therefore, when

the effects of array-gain are removed the normalized capacity converges to a finite

limit for large numbers of uncorrelated antennas, compared to unbounded linear

growth shown in Section 3.3.3 and in [5, 7] for the standard capacity. This finite

limit to the normalized capacity suggests that the array-gain is a significant factor

in the classical theoretical MIMO capacity scaling results, which predict capacities

which cannot be achieved in practice due to antenna packing constraints.

Note that the capacity Csat is identical to the capacity of nsat independent equal

power transmission lines (H = Insat), where the total transmit power PT is divided

equally between the nsat lines [5]. Therefore, the maximum normalized capacity for

the aperture consists of nsat orthogonal parallel channels each with power PT/nsat,

which grows logarithmically with radius to limit η/ ln 2

The theoretical maximum capacity Cmax is shown in Fig. 3.10 for increasing

numbers of antennas within an aperture of radius r0 = 1λ and angular spreads of

∆ = {20◦, 180◦}. Again, for the given aperture and scattering environment, the

ULA and UCA geometries do not couple strongly to the uncorrelated modes of

the region, and therefore exhibit much less capacity than that of the theoretical

maxima. The theoretical maximum capacity of an aperture of infinite radius is also

shown for increasing numbers of antennas, Cmax(nR, r0 = ∞), which converges to

the upper limit Climit(nR = ∞, r0 = ∞), for large numbers of antennas.

For the remainder of this thesis, any reference to capacity is given with the as-

sumption of fixed received power. Strictly speaking the capacity expression should

be referred to as the normalized capacity (in the array-gain sense), however, in the

following chapters the term capacity will be used, and it will be clearly stated when

it means otherwise.
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Figure 3.10: Theoretical maximum normalized capacity Cmax of an aperture of
radius r0 = 1λ for angular spread ∆ = {20◦, 180◦} with increasing number of
antennas. Vertical dashed lines indicate the theoretical antenna saturation point
for each angular spread. Shown also is the normalized capacity of the ULA and
UCA within the same sized apertures.

3.3.5 Constrained 3D Apertures

Consider a 3D scattering environment with the antenna array constrained within

a sphere of radius r0. Then from the 3D plane wave expansion [79]

eiky·b =
∞∑

n=0

n∑
m=−n

in4πjn(k ‖y‖)Y m
n (ŷ)Y m

n (ψ̂), (3.66)

then the spatial correlation between two antennas r and r′ located at yr and yr′ ,

respectively, is given by,

ρrr′ =
∞∑

n=0

n∑
m=−n

∞∑

n′=0

n′∑

m′=−n′
Jm

n (yr)Jm′
n′ (yr′) γmm′

nn′ , (3.67)

where

Jm
n (yr) , 4πinjn(k ‖yr‖)Y m

n (ŷr), (3.68)



76 Saturation Effects of Spatially Constrained MIMO Channels

defines the 3D spatial-to-mode function, which maps aperture sampling point yr

to the n,m-th mode of the of the plane wave expansion (3.66), and

γmm′
nn′ =

∫

S2
P(ψ̂)Y m

n (ψ̂)Y m′
n′ (ψ̂) ds(ψ̂), (3.69)

is the modal correlation between the n,m and n′,m′ modes, and characterizes the

3D scattering environment surrounding the receiver aperture.

The order n spherical Bessel function jn(·) is related to the Bessel function by

jn(z) =

√
π

2z
Jn+ 1

2
(z), (3.70)

therefore, as for Bessel functions, the spherical Bessel functions will exhibit a high-

pass nature. Consider the bessel function bound [109, p.362], |Jn(z)| ≤ zn/2nn!,

with n! = Γ(n + 1), then the spherical Bessel functions are upper bounded by,

jn(z) ≤
√

π

2

(z/2)n

Γ(n + 3
2
)
, (3.71)

using the Sterling bound [110] for Γ(n+3/2), we see that spherical Bessel functions

jn(z) ≈ 0 for n > (ez − 1)/2. Therefore, for a spherical aperture of radius r0 we

can define

M , dπer0/λe, (3.72)

such that the spatial correlation (3.67) is well approximated by the truncated series

ρrr
′ =

N∑
n=0

n∑
m=−n

N∑

n′=0

n′∑

m′=−n′
Jm

n (yr)Jm′
n′ (yr′) γmm′

nn′ , (3.73)

for every pair of antennas within the receiver aperture. As for the 2D case, we can

now decompose the spatial correlation matrix as

R = JΓJ †, (3.74)

where J is the nR× (M +1)2 aperture sampling matrix whose r-th row is given by

J |r =
[J 0

0 (yr)J −1
1 (yr) · · · Jm

m (yr)J −m−1
m+1 (yr)J −m

m+1(~tyr) · · · JM
M (yr)

]
, (3.75)
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and Γ is the (M + 1)2 × (M + 1)2 modal correlation matrix.

Therefore, following a similar approach to the 2D case, it is possible to define

aperture and angular saturation points for the capacity scaling with increasing

numbers of antennas. It immediately follows from rank(J) ≤ (M + 1)2 that the

aperture saturation point will be given by (M + 1)2 antennas for a spherical aper-

ture of radius r0, which allows for approximately dπer0/λe2 more antennas before

the region saturates over the 2D aperture of the same radius. Similarly, the angular

saturation point will be given by (N +1)2, where N = df(r0, ∆a, ∆e)e is a function

of radius and the azimuth and elevation angular spreads ∆a, ∆e, for a uniform lim-

ited azimuth/elevation scattering distribution, where the scatterers are uniformly

distributed over the sector {(θ, ϕ); θ ∈ [θ0 −∆a, θ0 + ∆a], ϕ ∈ [ϕ0 −∆e, ϕ0 + ∆e]}.

3.4 Summary and Contributions

This chapter has derived a theoretical maximum capacity for a fixed region of

space which depends only on the radius of the region and the angular spread. An

antenna saturation point has been theoretically defined at which this maximum

occurs, whereby further increases in the number of antennas fails to give further

capacity gains. These results have significant implications for realizable MIMO

systems, simply cramming more and more antennas into a region of space does

not increase the ergodic capacity. Therefore we see that space also needs to be

considered for the information bearing capacity of the system, along with the usual

time-frequency constraint.

Some specific contributions made in this chapter are:

1. The uniform circular array in 2D isotropic scattering was theoretically shown

to suffer a capacity saturation, where further increases in antenna numbers

gives no further capacity gains (other than array gain). By investigating the

spectrum of the spatial correlation matrix this saturation point in the number

of antennas was shown to be proportional to the array radius.

2. Using the spatial correlation expressions in Chapter 2, the spatial correlation

matrix of an arbitrary array was decomposed to reveal the independent effects

of antenna placement and angular spread.

3. Using this matrix decomposition the results of the UCA were extended to

arbitrary arrays within a circle of fixed radius and isotropic scattering. A
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maximum capacity for the circular region was derived which depends only

on the radius of the region. The minimum number of antennas required to

achieve maximum capacity was also derived.

4. The results of the capacity saturation for apertures in isotropic scattering

were extended to scattering of limited angular spread surrounding the array.

5. A fixed received power concept was introduced, where regardless of the num-

ber of antennas the total received power remains constant. By removing the

array gain effects, assuming fixed received power shows that there is a fun-

damental limit to MIMO communications which depends only on the SNR

of the channel.

6. The circular and 2D scattering results were extended to arbitrary arrays

constrained within spheres with 3D scattering. It was shown that using 3D

arrays gave a significant increase in the capacity for arrays within spheres

over that of the circle with the same radius.



Chapter 4

Spatial Characterization of

MIMO Channels

With the recent application of antenna arrays for spatial multiplexing in MIMO

systems comes the need for better understanding of the spatial properties of the

wireless communications channel. As shown in the previous chapters, these spatial

properties will have significant impact on the capacity of multi-antenna systems.

Therefore, a good understanding of these properties is required for effective design

and implementation of wireless MIMO systems.

For randomly fading channels, much of the literature is limited to the idealis-

tic situation of independent and identically distributed (i.i.d.) Gaussian channels,

where the channel gains are modelled as independent Gaussian random variables

(for example see [5,7]). The i.i.d. model corresponds to sufficiently spaced antennas

such that there is no spatial correlation between antenna elements at the transmit

and receive arrays, along with significant scattering between arrays. However, in

practice, realistic scattering environments and limited antenna separation leads to

channels which exhibit correlated fades.

One approach to MIMO channel modelling for correlated fading is to mea-

sure the MIMO channel responses through field measurements. By analyzing the

recorded data the significant characteristics of the MIMO channel can be obtained

and the MIMO channel can be modelled to have similar characteristics [68,114–116].

Alternatively, deterministic physical models such as ray tracing [117,118] simulate

specific propagation scenarios and may be combined with Monte Carlo analysis to

provide statistical channel information. Such methods give an accurate characteri-

zation of the channel, however, ray tracing modelling is computationally expensive

and provides results for specific scenarios only. Finally, a statistical model can be

79



80 Spatial Characterization of MIMO Channels

postulated which attempts to capture the physical channel characteristics based on

the basic principles of radio propagation [65,105,119,120]. These scattering models

can often be used as simple analysis tools which illustrate the essential character-

istics of the MIMO channel, provided the constructed scattering environment is

reasonable.

With the notable exception of [105] and [120], the statistical models mentioned

above have poor physical significance. In particular, the separate effects of the

scatterers and the antenna correlation are not accounted for. As outlined in [105],

the models assume that only the spatial fading correlation is responsible for the rank

structure of the MIMO channel. In practice, however, high rank MIMO channels

correspond not only to the low fading correlation, but also to the structure of

scattering in the propagation environment.

The models presented in [105,120] allow for insight into the effects of spatial cor-

relation and scattering, however, they are unfortunately limited to particular array

geometries and model the scattering environment using a discrete representation.

Therefore, although offering considerable insight into the scattering characteristics

of the channel they are restricted spatially, in the sense that the antenna geometry

is restricted to a particular array configuration (usually linear) thus restrict the

model to studying limited antenna variations (inter-element spacing), along with

the ray tracing style of discrete scattering environments. From these observations,

there is a need for a generalized channel model which provides insight into the

spatial aspects of MIMO channels, thus giving an ideal framework to build space-

time communication systems. In contrast to previous models, the contribution of

this chapter is a spatial channel model which includes the physical parameters of

arbitrary antenna configurations and a tractable parameterization of the complex

scattering environment.

Here, it is desired to characterize the fading due to spatial effects rather than

temporal, therefore the model developed in this chapter and employed throughout

this thesis assumes a flat fading channel where the propagation delay is always

less than the symbol period. With little effort the model can be extended to en-

compass frequency selective fading, however it is not reported here since, although

important, it provides no further insights into the goals of this thesis.

One of the basic principles of radio propagation widely used in channel mod-

elling is the plane wave. Before developing the general MIMO channel model, this

chapter begins with a careful look at the structure of plane wave propagation and

develops a truncated representation that is widely used throughout the rest of this
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thesis.

4.1 Modal Truncation of Plane Waves

In the previous chapter, a critical threshold was shown to exist in the number

of antennas when analyzing the behavior of the capacity for fixed apertures and

angular spreads. Based on the vanishing nature of the Bessel functions, the spatial

correlation expression was simplified to give rise to a spatial correlation matrix

decomposition which showed the dominant factors on the capacity behavior. In

this section, this simplification is shown to result from a more general truncation of

plane wave expansions. This result is used extensively through out the remainder of

this thesis in modelling the MIMO channel, therefore, the error associated with this

truncation is of significant interest, and is studied in some depth in this section.

In particular, the truncation error is shown to be small and has an exponential

decrease to zero as more terms are added.

4.1.1 Plane Waves

One of the most important predictions of Maxwell’s equations is the existence of

electromagnetic waves which can transport energy. For a source free media, each

cartesian component of the electric and magnetic fields satisfy the classical wave

equation

∇2u(x, t) = µε
∂2u(x, t)

∂t2
, (4.1)

where ∇2 is the Laplacian operator, and µ and ε are the permittivity and perme-

ability of the medium, respectively, which for nondispersive media are independent

of frequency.

For time-harmonic or narrowband field, the field consists of a single radial

frequency ω and is and can be expressed as u(x, t) = u(x)e−iωt, for which the wave

equation reduces to the Helmholtz equation

∇2u(x) + k2u(x) = 0, (4.2)

where k = ω
√

µε = 2π/λ is the wave number, or propagation constant. The

Helmholtz equation has a general solution of the exponential form eik·x, therefore

there is a simple set of complex travelling wave solutions to the wave equation,
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given by

u(x, t) = ei(k·x−ωt), (4.3)

where k = kk̂. This solution is a wave ‘travelling’ in the direction of k̂ in the sense

that a point of constant phase, i.e., k · x− ωt is constant, moves in this direction

with speed c = ω/k. Furthermore, the surfaces of constant phase are planes per-

pendicular to the direction of wave propagation k, hence the solutions (4.3) are

referred to as plane waves.

4.1.2 2D Plane Wave Propagation

A plane wave restricted to a 2D environment travelling in direction k = (k, φ) can

be expressed by the 2D modal1 expansion [79]

eik·x = J0(k ‖x‖) + 2
∞∑

n=1

inJn(k ‖x‖) cos(n(θx − φ)), (4.4)

at some point x = (‖x‖ , θx). Consider the truncation of the expansion (4.4) to

N + 1 terms, giving absolute error

εN(x) = 2

∣∣∣∣∣
∑
n>N

inJn(k ‖x‖) cos(n(θx − φ))

∣∣∣∣∣ . (4.5)

Using the Bessel function bound [109, p.362],

|Jn(z)| ≤ zn

2nΓ(n + 1)
≡ zn

2nn!
, (4.6)

for n, z ≥ 0, the truncation error can be bounded by

εN(x) ≤ 2
∑
n>N

|Jn(k ‖x‖)| (4.7a)

≤ 2
∑
n>N

(π ‖x‖ /λ)n

n!
. (4.7b)

Letting z , π ‖x‖ /λ, then the error can be written as

εN(x) ≤ 2RN(z), z > 0, (4.8)

1Each mode, indexed by n, corresponds to a different solution of the governing electromagnetic
equations (Maxwell’s equations) for the given boundary conditions.
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where remainder

RN(z) ,
∑
n>N

zn

n!
(4.9a)

= ez −
N∑

n=0

zn

n!
(4.9b)

=
zN+1

(N + 1)!

∞∑
n=0

(N + 1)!

(N + 1 + n)!
zn, (4.9c)

characterizes the behavior of εN(x).

First, observe that

(N + 1)!

(N + 1 + n)!
zn ≤

(
z

N + 2

)n

, (4.10)

therefore, since the sum of geometric series pn is given by 1/(1 − p), the remain-

der (4.9c) is upper bounded by

RN(z) ≤ zN+1

(N + 1)!

(
N + 2

N + 2− z

)
(4.11a)

≤ 1√
2π(N + 1)

(
N + 2

N + 2− z

)(
ez

N + 1

)N+1

, (4.11b)

where the second inequality follows from the Stirling lower bound n! >
√

2πnnne−n.

Provided N > ez− 1 the exponential term in (4.11b) is contained, therefore giving

a finite upper bound on the truncation error. Furthermore, by Taylor’s theorem,

for some ηN ∈ [0, 1],

∞∑
n=0

(N + 1)!

(N + 1 + n)!
zn = exp(ηNz), (4.12)

thus, for integer ∆ ≥ 0, exp(ηN+∆z) ≤ exp(ηNz) and from (4.9c) the ratio

RN+∆(z)

RN(z)
=

zN+∆+1

(N + ∆ + 1)!
· (N + 1)!

zN+1
· exp(ηN+∆z)

exp(ηNz)
(4.13a)

≤ z∆

(N + 2)(N + 3) · · · (N + ∆ + 1)
(4.13b)

≤
(

z

N + 2

)∆

= α−∆|α=(N+2)/z. (4.13c)
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Therefore, whenever N > z−2 we have α > 1 and the remainder RN+∆(z) decreases

exponentially as ∆ increases.

To have an effective truncation it is desirable to choose the smallest N such

that the error bound is small in absolute terms as well as having exponential decay

of the error as ∆ increases. Therefore, motivated by (4.11b) and (4.13c) define the

critical value of N as the integer function

Nz , deze, z > 0. (4.14)

Then using inequality arguments, for N > Nz it can be shown that

(
ez

N + 1

)N+1

≤ eez

eN+1
≤ 1

e
, (4.15)

and

(
N + 2

N + 2− z

)
≤ e

e− 1
, (4.16)

therefore, using (4.15) and (4.16) in bound (4.11b) gives

RN(z) ≤ (N + 1)−1/2

√
2π(e− 1)

, N > Nz. (4.17)

The piecewise nature of RN(z) as a function of z, implies there are local maxima

at z ≤ N/e, therefore searching over these local maxima using the exact expres-

sion (4.9c) gives the uniform upper bound

RN(z) ≤ max
N
RN(N/e) = R2(2/e) ≈ 0.08. (4.18)

Futhermore, since (N + 2)/z > e the remainder RN+∆(z) decreases at least as fast

as exp(−∆) as ∆ increases. Therefore, from the above bound on remainder RN(z),

with z ≡ π ‖x‖ /λ then from (4.8) the truncation error is bounded by

εN+∆(x) ≤ 0.16 exp(−∆), N > N (x), ∆ ∈ Z+, (4.19)

where

N (x) , dπe ‖x‖ /λe, (4.20)

that is, the truncation error in (4.4) for N (x) + 1 terms is small, and decreases at
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Figure 4.1: Absolute truncation error εN(x) (4.5) for increasing number of terms
N + 1 of the 2D plane wave expansion (4.4). Dashed vertical lines indicate the
number of terms given by critical value N (x) + 1 for each x.

least exponentially to zero as more terms are used.

The truncation error εN(x) is shown in Fig. 4.1 for increasing number of terms

N +1 of the plane wave expansion (4.4). Shown as dashed vertical lines, the critical

truncation value N (x) + 1 for each x gives a small absolute error, and as can be

seen from the curves, an exponential decrease in error with any additional terms.

4.1.3 3D Plane Wave Propagation

Following a similar approach to the 2D case, the 3D plane wave can also be repre-

sented with negligible error using a finite number of terms. Consider a plane wave

in a 3D environment travelling in direction k = kk̂ then it can be expressed by the

3D modal expansion [79]

eik·x =
∞∑

n=0

in(2n + 1)jn(k ‖x‖)Pn(k̂ · x̂), (4.21)
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where Pn(·) is the Legendre polynomial of order n. Consider the truncation of the

expansion (4.21) to N + 1 terms, giving absolute error

eN(x) =

∣∣∣∣∣
∑
n>N

in(2n + 1)jn(k ‖x‖)Pn(k̂ · x̂)

∣∣∣∣∣ , (4.22)

which, given spherical Bessel function bound

jn(z) ≤
√

π

2

(z/2)n

Γ(n + 3/2)
≡

√
π

(2n + 1)

(z/2)n

Γ(n + 1/2)
, (4.23)

and the property
∣∣∣Pn(k̂ · x̂)

∣∣∣ ≤ 1, gives the upper bound on truncation error

εN(x) ≤
∑
n>N

(2n + 1) |jn(k ‖x‖)| (4.24a)

≤ √
π

∑
n>N

(π ‖x‖ /λ)n

Γ(n + 1/2)
. (4.24b)

Letting z , π ‖x‖ /λ, then the error can be expressed as

εN(x) ≤ √
πRN(z), z > 0, (4.25)

where remainder

RN(z) ,
∑
n>N

zn

Γ(n + 1/2)
, (4.26)

characterizes the behavior of εN(x).

First, define the polynomial

SN(z) = 1 +
∞∑

k=1

zk

∏k−1
`=0 (N + 5/2 + `)

, (4.27)

then observe that

RN(z) =
zN+1

Γ(N + 3/2)
SN(z) (4.28a)

≤ zN+1

Γ(N + 3/2)

∞∑

k=0

(
z

N + 5/2

)k

(4.28b)

≤ 1√
2πe

(
ez

N + 1/2

)N+1 ∞∑

k=0

(
z

N + 5/2

)k

, (4.28c)
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where (4.28c) follows from (4.28b) via the Stirling bound on the Gamma function

Γ(n + 3/2) ≥
√

2πe

(
n + 1/2

e

)n+1

. (4.29)

Hence, provided N > ez−1/2 the exponential term in (4.28c) is contained, likewise,

provided N > z − 5/2, the geometric series converges giving

RN(z) ≤ 1√
2πe

(
N + 5/2

N + 5/2− z

)(
ez

N + 1/2

)N+1

, (4.30)

therefore, provided N is sufficiently large a finite upper bound exists for the trun-

cation error. Furthermore, consider the ratio

RN+∆(z)

RN(z)
=

zN+∆+1

Γ(N + ∆ + 3/2)
· Γ(N + 3/2)

zN+1
· SN+∆(z)

SN(z)
(4.31a)

≤
(

z

N + 3/2

)∆

= α−∆|α=(N+3/2)/z, (4.31b)

which for N > z − 3/2 gives α > 1 and the remainder RN+∆(z) decreases expo-

nentially as ∆ increases.

To have an effective truncation it is desirable to choose the smallest N such

that the error bound is small in absolute terms as well as having exponential decay

of the error as ∆ increases. Therefore, motivated by (4.30) and (4.31b) define the

critical value of N as the integer function

Nz , deze, z > 0. (4.32)

Then using inequality arguments, for N > Nz it can be shown that,

N + 5/2

N + 5/2− z
≤ e

e− 1
, (4.33)

and

ze

N + 1/2
≤ 1, (4.34)

therefore, using (4.33) and (4.34) in bound (4.30) gives

RN(z) <
e√

2πe(e− 1)
, N > Nz, (4.35)
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Figure 4.2: Absolute truncation error εN(x) (4.22) for increasing number of terms
N + 1 of the 3D plane wave expansion (4.21). Dashed vertical lines indicate the
number of terms given by critical value N (x) + 1 for each x.

which defines an explicit uniform bound. Furthermore, since (N + 3/2)/z > e the

remainder RN+∆(z) decreases at least as fast as exp(−∆) as ∆ increases. Therefore,

from the above bound on remainder RN(z), with z ≡ π ‖x‖ /λ then from (4.31b)

the truncation error is bounded by

εN+∆(x) ≤
√

e/2

e− 1
exp(−∆), N > N (x), ∆ ∈ Z+, (4.36)

where

N (x) , dπe ‖x‖ /λe, (4.37)

that is, the truncation error in (4.21) for N (x) + 1 terms is small, and decreases

at least exponentially to zero as more terms are used.

The truncation error εN(x) is shown in Fig. 4.2 for increasing number of terms

N + 1 of the plane wave expansion (4.21). Shown as dashed vertical lines, the

critical truncation value N (x) + 1 for each x gives a small absolute error, and as

can be seen from the curves, an exponential decrease in error with any additional

terms.
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4.2 2D Channel Model

Consider the 2D MIMO system shown in Fig. 4.3, where the transmitter consists of

nT transmit antennas located within a circular aperture of radius rT. Similarly, at

the receiver, there are nR antennas within a circular aperture of radius rR. Denote

the nT transmit antenna positions by xt = (‖xt‖ , θt), t = 1, 2, . . . , nT, in polar

coordinates, relative to the origin of the transmit aperture, and the nR receive

antenna positions by yr = (‖yr‖ , ϕr), r = 1, 2, . . . , nR, relative to the origin of the

receive aperture. Note that all transmit and receive antennas are constrained to

within the transmit and receive apertures respectively, that is,

‖xt‖ ≤ rT, t = 1, 2, . . . , nT, (4.38)

‖yr‖ ≤ rR, r = 1, 2, . . . , nR. (4.39)

It is also assumed that the scatterers are distributed in the farfield from all transmit

and receive antennas, therefore, define circular scatterer free regions of radius rTS >

rT, and rRS > rR, such that any scatterers are in the farfield to any antenna

within the transmit and receive apertures, respectively. Note that for consistency,

the origins of the transmit and receive apertures are required to be separated by

greater than rTS+rRS. However, in practice the transmitter and receiver are usually

separated by much larger distances.

Finally, the random scattering environment is defined by the effective random

complex scattering gain g(φ, ψ) for a signal leaving from the transmit aperture at

an angle φ, and entering the receive aperture at an angle ψ, via any number of

paths through the scattering environment. One of the most physically reasonable

assumptions for the modelling of signals in radio channels is the uncorrelated scat-

terer model, in this case the scattering channel is characterized by the second-order

statistics of the scattering gain function g(φ, ψ), given by,

E {g(φ, ψ)g(φ′, ψ′)} = G(φ, ψ)δ(φ− φ′)δ(ψ − ψ′), (4.40)

where δ(·) is the Kronecker delta function, δ(0) = 1 and zero elsewhere, and

G(φ, ψ) = E
{|g(φ, ψ)|2} represents the channel power over departure and arrival

angles φ and ψ.

Using this model, the wireless channel has been separated into three distinct

spatial regions of signal propagation, namely, the transmitter and receiver scatterer

free regions which enclose the transmit and receive apertures, and the rest of space
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Figure 4.3: Scattering model for a 2D flat fading narrowband MIMO system. rT

and rR are the radii of circular apertures which contain the transmit and receive
antenna arrays, respectively. The radii rTS and rRS describe scatterer free circular
regions surrounding the transmit and receive apertures, assumed large enough that
any scatterer is farfield to all antennas. The scattering environment is described
by g(φ, ψ) which gives the effective random complex gain for signals departing the
transmit aperture from angle φ and arriving at the receive aperture from angle ψ,
via any number of scattering paths.



4.2 2D Channel Model 91

assumed to be a general complex scattering media.

Consider the narrowband transmission of nT baseband signals, {x1, x2, . . . , xnT
},

over a single signalling interval from the nT transmit antennas located within the

transmit aperture. Since the region of radius rTS is assumed large enough such that

any point on its edge is farfield to all the transmit antennas, transmitted signals

leaving this region can be considered plane waves. Therefore, the baseband signal

leaving the scatterer free transmit region along direction φ is given by

Φ(φ) =

nT∑
t=1

xt e
ik‖xt‖ cos(θt−φ). (4.41)

After the transmitted signals propagation through the scattering environment, the

baseband signal entering the scatterer free receiver region along direction ψ is then

given by

Ψ(ψ) =

∫

S1
Φ(φ) g(φ, ψ) dφ. (4.42)

Again, given the scatterers are assumed farfield to the receive aperture, the signals

impinging on the receiver array will consist of plane waves, thus the signal at yr is

given by

zr =

∫

S1
Ψ(ψ)e−ik‖yr‖ cos(ϕr−ψ)dψ (4.43a)

=

nT∑
t=1

xt

∫∫

S1
g(φ, ψ) eik‖xt‖ cos(θt−φ) e−ik‖yr‖ cos(ϕr−ψ) dφdψ. (4.43b)

Denote x = [x1, x2, . . . , xnT
]′ as the column vector of the transmitted signals,

and n = [n1, n2, . . . , nnR
]′, as the noise vector where nr is the independent additive

white Gaussian noise (AWGN) at the r-th receive antenna, then the vector of

received signals y = [y1, y2, . . . , ynR
]′ is given by

y = Hx + n, (4.44)

where H is the complex random channel matrix with r, t-th element

H|r,t =

∫∫

S1
g(φ, ψ)eik‖xt‖ cos(θt−φ) e−ik‖yr‖ cos(ϕr−ψ) dφdψ, (4.45)

representing the channel gain between the t-th transmit antennna and the r-th

receive antenna.
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Equation (4.45) allows modelling of the spatial channel for any array config-

uration and scattering environment. However, the integral representation is not

directly usable in many applications where closed-form channel gain expressions

are desired. In the next section, using a modal analysis of plane waves (4.45)

reduces into a form which reveals the underlying spatial structure of the chan-

nel gains, giving a decomposition of the channel matrix H which highlights the

different effects of signal propagation in each spatial region.

4.2.1 Channel Matrix Modal Decomposition

Consider the 2D modal expansion of the plane wave

eik‖x‖ cos(θx−φ) = J0(k ‖x‖) + 2
∞∑

n=1

inJn(k ‖x‖) cos(n(θx − φ)) (4.46a)

=
∞∑

n=−∞
Jn(k ‖x‖)e−in(θx−φ), (4.46b)

for vector x = (‖x‖ , θx), then from Section 4.1.2 the plane wave is well approxi-

mated by the finite summation

eik‖x‖ cos(θx−φ) ≈
N∑

n=−N

Jn(x)einφ, (4.47)

for N = dπe ‖x‖ /λe, where Jn(x) is defined as the spatial-to-mode function

Jn(x) , Jn(k ‖x‖)ein(θx−π/2), (4.48)

which maps the sampling point x to the n-th mode of the expansion (4.46b).

Define

NT , dπerT/λe, (4.49)

NR , dπerR/λe, (4.50)

then from Section 4.1.2 the truncated expansions

eik‖xt‖ cos(θt−φ) ≈
NT∑

n=−NT

Jn(xt)e
inφ, (4.51)
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e−ik‖yr‖ cos(ϕr−ψ) ≈
NR∑

m=−NR

Jm(yr)e
−inψ, (4.52)

hold for every antenna within the transmit and receive apertures of radius rT and

rR, respectively.

Substitution of (4.51) and (4.52) into (4.45), gives the closed-form expression

for the channel gain between the t-th transmit antenna and r-th receive antenna

as

H|r,t ≈
NT∑

n=−NT

NR∑
m=−NR

Jn(xt)Jm(yr)

∫∫

S1
g(φ, ψ)einφe−imψdφdψ. (4.53)

Therefore, the channel matrix H can be decomposed into a product of three ma-

trices, which correspond to the three spatial regions of signal propagation,

H = JRHSJ
†
T, (4.54)

where JT is the nT × (2NT + 1) transmit aperture sampling matrix,

JT =




J−NT
(x1) J−NT+1(x1) · · · JNT

(x1)

J−NT
(x2) J−NT+1(x2) · · · JNT

(x2)
...

...
. . .

...

J−NT
(xnT

) J−NT+1(xnT
) · · · JNT

(xnT
)




, (4.55)

which describes the sampling of the transmit aperture, JR is the nR × (2NR + 1)

receiver aperture sampling matrix,

JR =




J−NR
(y1) J−NR+1(y1) · · · JNR

(y1)

J−NR
(y2) J−NR+1(y2) · · · JNR

(y2)
...

...
. . .

...

J−NR
(ynR

) J−NR+1(ynR
) · · · JNR

(ynR
)




, (4.56)

which describes the sampling of the receive aperture, and HS is a (2NR + 1) ×
(2NT + 1) scattering environment matrix, with p, q-th element

HS|p,q =

∫∫

S1
g(φ, ψ) ei(q−NT−1)φ e−i(p−NR−1)ψ dφdψ, (4.57)

representing the complex gain between the (q − NT − 1)-th mode of the transmit
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aperture and the (p−NR − 1)-th mode of the receive aperture2.

Consider the 2D Fourier series expansion of the periodic scattering function

g(φ, ψ), given by

g(φ, ψ) =
1

4π2

∞∑
n=−∞

∞∑
m=−∞

βn
me−inφeimψ, (4.58)

with coefficients

βn
m =

∫∫

S1
g(φ, ψ)einφe−imψdφdψ. (4.59)

Therefore, letting n = q − NT − 1, and m = p − NR − 1 denote the transmitter

mode and receiver mode index, respectively, the scattering environment matrix

coefficients are given by

HS|p,q = βq−NT−1
p−NR−1 = βn

m. (4.60)

Thus the random scattering environment can be parameterized by the complex

random coefficients βn
m, n = {−NT, . . . , NT}, m = {−NR, . . . , NR}, giving

HS =




β−NT
−NR

β−NT+1
−NR

· · · βNT
−NR

β−NT
−NR+1 β−NT+1

−NR+1 · · · βNT
−NR+1

...
...

. . .
...

β−NT
NR

β−NT+1
NR

· · · βNT
NR




. (4.61)

Due to the similarities between the 2D and 3D channel models, comments on

the significance of the model and the channel decomposition are left to after the

3D case, and can be found in Section 4.4.

4.3 3D Channel Model

Consider the 3D MIMO system shown in Fig. 4.4, where the transmitter consists of

nT transmit antennas located within a spherical aperture of radius rT. Similarly, at

the receiver, there are nR antennas within a spherical aperture of radius rR. Denote

the nT transmit antenna positions by the vectors xt, t = 1, 2, . . . , nT, relative

to the origin of the transmit aperture, and the nR receive antenna positions by

2It is important to note the distinction between the mode-to-mode gains due to the scattering
environment described by HS, and the antenna-to-antenna channel gains described by H.
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yr, r = 1, 2, . . . , nR, relative to the origin of the receive aperture. Note that all

transmit and receive antennas are constrained to within the transmit and receive

apertures respectively, that is,

‖xt‖ ≤ rT, t = 1, 2, . . . , nT, (4.62)

‖yr‖ ≤ rR, r = 1, 2, . . . , nR. (4.63)

It is also assumed that the scatterers are distributed in the farfield from all transmit

and receive antennas, therefore, define spherical scatterer free regions of radius

rTS > rT, and rRS > rR, such that any scatterers are in the farfield to any antenna

within the transmit and receive apertures, respectively. Note that for consistency,

the origins of the transmit and receive apertures are required to be separated by

greater than rTS +rRS, however in practice the transmitter and receiver are usually

separated by much larger distances.

Finally, the random scattering environment is defined by the effective random

complex scattering gain g(φ̂, ψ̂) for a signal leaving from the transmit aperture

along direction φ̂, and entering the receive aperture from direction ψ̂, via any num-

ber of paths through the scattering environment. Again the uncorrelated scatterer

model is assumed, hence the scattering channel is characterized by the second-order

statistics of the scattering gain function g(φ̂, ψ̂), given by,

E
{

g(φ̂, ψ̂)g(φ̂
′
, ψ̂

′
)
}

= G(φ̂, ψ̂)δ(φ̂− φ̂
′
)δ(ψ̂ − ψ̂

′
), (4.64)

where G(φ̂, ψ̂) = E

{∣∣∣g(φ̂, ψ̂)
∣∣∣
2
}

represents the channel power over departure and

arrival directions φ̂ and ψ̂.

Using this 3D model a derivation similar to that of (4.43b) gives the received

signal at position yr as

zr =

nT∑
t=1

xt

∫∫

S2
g(φ̂, ψ̂) eikxt·b� e−ikyr·b ds(φ̂)ds(φ̂), (4.65)

where ds(φ̂) is a surface element of the unit sphere S2 with unit normal φ̂. There-

fore, the vector of received signals can be expressed in matrix vector form (4.44),
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φ̂

rRS

rR

rT

ψ̂

scatterers

rTS

g(φ̂, ψ̂)

xt
y

r

receive

transmit
aperture

aperture

Figure 4.4: Scattering model for a 3D flat fading narrowband MIMO system. rT

and rR are the radii of spherical apertures which contain the transmit and receive
antenna arrays, respectively. The radii rTS and rRS describe scatterer free spherical
regions surrounding the transmit and receive apertures, assumed large enough that
any scatterer is farfield to all antennas. The scattering environment is described
by g(φ̂, ψ̂) which gives the effective random complex gain for signals departing

the transmit aperture from direction φ̂ and arriving at the receive aperture from
direction ψ̂, via any number of scattering paths.
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with the r, t-th element of the complex random channel matrix given by

H|r,t =

∫∫

S2
g(φ̂, ψ̂) eikxt·b� e−ikyr·b ds(φ̂)ds(ψ̂), (4.66)

representing the channel gain between the t-th transmit antennna and the r-th

receive antenna.

4.3.1 Channel Matrix Modal Decomposition

Consider the 3D modal expansion of the plane wave

eikx·b� =
∞∑

n=0

in(2n + 1)jn(k ‖x‖)Pn(x̂ · φ̂) (4.67a)

= 4π
∞∑

n=0

n∑
m=−n

injn(k ‖x‖)Y m
n (x̂)Y m

n (φ̂), (4.67b)

where (4.67b) follows via the addition theorem [79]

n∑
m=−n

Y m
n (x̂)Y m

n (φ̂) =
2n + 1

4π
Pn(x̂ · φ̂), (4.68)

then from Section 4.1.3 the plane wave is well approximated by the truncated

summation

eikx·b� ≈
N∑

n=0

n∑
m=−n

Jm
n (x)Y m

n (φ̂), (4.69)

where Jm
n (x) is defined as the spatial-to-mode function

Jm
n (x) , 4π(−i)njn(k ‖x‖)Y m

n (x̂), (4.70)

which maps the sampling point x to the n,m-th mode of the expansion (4.67b).

Define

NT = dπerT/λe, (4.71)

NR = dπerR/λe, (4.72)
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then from Section 4.1.3 the truncated expansions

eikxt·b� ≈
NT∑
n=0

n∑
m=−n

Jm
n (xt)Y

m
n (φ̂), (4.73)

e−ikyr·b ≈
NR∑

n′=0

n′∑

m′=−n′
Jm′

n′ (yr)Y
m′
n′ (ψ̂), (4.74)

hold for every antenna within the transmit and receive apertures of radius rT and

rR, respectively.

Substitution of (4.73) and (4.74) into (4.66), gives the closed-form expression

for the channel gain between the t-th transmit antenna and r-th receive antenna

as

H|r,t =

NT∑
n=0

n∑
m=−n

NR∑

n′=0

n′∑

m′=−n′
Jm

n (xt)Jm′
n′ (yr)β

n′,m′
n,m , (4.75)

where

βn′,m′
n,m =

∫∫

S2
g(φ̂, ψ̂) Y m

n (φ̂) Y m′
n′ (ψ̂) ds(φ̂)ds(ψ̂), (4.76)

are the coefficients of the spherical harmonic basis expansion of the periodic channel

gains;

g(φ̂, ψ̂) =
∞∑

n=0

n∑
m=−n

∞∑

n′=0

n′∑

m′=−n′
βn′,m′

n,m Y m
n (φ̂)Y m′

n′ (ψ̂). (4.77)

Therefore, the channel matrix H can be decomposed into a product of three ma-

trices, which correspond to the three spatial regions of signal propagation,

H = JRHSJ
†
T, (4.78)

where JT is the nT × (NT + 1)2 transmit aperture sampling matrix,

JT =




J 0
0 (x1) J −1

1 (x1) · · · J −m
m (x1) · · · Jm

m (x1) · · · J NT
NT

(x1)

J 0
0 (x2) J −1

1 (x2) · · ·
...

. . .
...

J 0
0 (xnT

) J −1
1 (xnT

) · · · · · · J NT
NT

(xnT
)




,

(4.79)
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which describes the sampling of the transmit aperture, JR is the nR × (NR + 1)2

receiver aperture sampling matrix,

JR =




J 0
0 (y1) J −1

1 (y1) · · · J −m
m (y1) · · · Jm

m (y1) · · · J NR
NR

(y1)

J 0
0 (y2) J −1

1 (y2) · · ·
...

. . .
...

J 0
0 (ynR

) J −1
1 (ynR

) · · · · · · J NR
NR

(ynR
)




,

(4.80)

which describes the sampling of the receive aperture, and HS is a (NR + 1)2 ×
(NT + 1)2 scattering environment matrix,

HS =




β0,0
0,0 β0,0

1,−1 · · · β0,0
NT,NT

β1,−1
0,0 β1,−1

1,−1 · · · β1,−1
NT,NT

...
...

. . .
...

βNR,NR
0,0 βNR,NR

1,−1 · · · βNR,NR

NT,NT




, (4.81)

which gives the complex gains between the m,n-th mode of the transmit aper-

ture and the m′, n′-th mode of the receive aperture, and parameterizes random

scattering environment.

4.4 Comments on the Channel Model

The 2D and 3D channel matrix decompositions separates the channel into three

distinct regions of signal propagation: a free-space transmitter region, a scattering

environment region, and a free-space receiver region. The transmit and receive

aperture sampling matrices, JT and JR, describe the mapping of the transmitted

signals to the transmitter modes, and the receiver modes to the receiver antenna

positions, respectively. For fixed array geometries within the spatial apertures,

regardless of aperture movement or scattering environment variations, the sampling

matrices are constant and characterize the effects of antenna placement on the

overall channel matrix H . Conversely, for a random scattering environment3 the

scattering environment matrix HS has random elements, corresponding to random

gains between the modes of the transmit and receive apertures.

In the wireless literature on MIMO systems, the elements of the channel matrix

3The scattering environment may be random due to random variations in the scatterers, or
due moving apertures through fixed scattering, or both.
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are generally modelled as random variables (with the exception of work of Gesbert

et. al. [105], and Sayeed [120]). However, in this model, deterministic portions

are factored out leaving only the parameters of the scattering environment to be

modelled as random variables. This is a clear advantage over existing models, since

one can explicitly see the role of spatially constrained arbitrary antenna configura-

tions (not limited to specific array configurations [120], or the manifested antenna

correlation as in [105]) and general scattering environments within the model.

Therefore, the model presented in this chapter is more general than previously

reported models, giving a succinct representation of the continuous MIMO channel

for a wide range of antenna configurations and scattering environments. In fact, as

will be explored further in Chapter 5, many common models in the literature are

special cases of the model presented here. Although a more general model than

those previously reported, many important aspects of the channel are captured

and, as shown in the next section and later chapters, give rise to valuable insights

into the spatial characteristics of the channel.

4.4.1 Spatial Degrees of Freedom (SDOF)

In this section the Spatial degrees of freedom (SDOF) of a given MIMO system

are quantified. In other words, how many free parameters are available when the

transmit and receive antennas are contained within spatial apertures of radius rT

and rR, respectively, within some scattering environment.

The rank of the channel matrix H determines the maximum number of parallel

sub-channels between the transmitter array and the receiver array. In the literature

the i.i.d. model assumes that the channel matrix has independent elements corre-

sponding to sufficiently spaced antennas, in this case the channel rank is given by

min{nT, nR}. However, when realistic antenna configurations and scattering envi-

ronments are considered, the elements of H become correlated and the number of

possible parallel sub-channels is reduced. The channel decomposition presented in

this chapter separates the effects of antenna configuration and the scattering en-

vironment and therefore allows us to express their independent effects on channel

rank as

rank(H) = min{rank(JR), rank(HS), rank(JT)}. (4.82)

Recall that the number of columns in the receive and transmit aperture sampling

matrices is determined by the radii of the aperture, then for fixed sized apertures
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the rank of JT and JR cannot exceed 2NT +1 and 2NR +1, respectively, for the 2D

environment, and (NT + 1)2 and (NR + 1)2, respectively, for the 3D environment,

regardless of the number of antennas contained within.

A rich scattering environment has generally been defined in the MIMO literature

as one which supports min{nT, nR} independent sub-channels. However, if the

antennas are contained within spatial apertures of finite size, the environment

need only provide the maximum number of independent links between the transmit

aperture modes to the receive aperture modes, which for a large number of antennas

is less than min(nT, nR). Therefore, denote the number of transmit modes by N

and the number of receive modes by M , then define the spatial richness factor

κS , rank(HS)

min{N,M} (4.83)

where κS ∈ Q(0,1] characterizes the scattering environment. For κS = 1, corre-

sponding to a rich scattering environment, the scattering matrix HS is full rank

with rank given by the minimum rank of the transmit and receive aperture sam-

pling matrices. However, for κS < 1 the scattering environment is not sufficiently

rich to support the full set of independent modal gains, hence, the coefficients of

HS may become correlated leading to a reduction in rank(HS).

The SDOF of the a scattering environment surrounding transmit and receive

apertures of radii rT and rR, respectively, can now be expressed as

SDOF = κS min{N, M}, (4.84)

where N = 2NT +1, M = 2NR +1 for circular apertures, and N = (NT +1)2, M =

(NR + 1)2 for spherical apertures, with NT = dπerT/λe, NR = dπerR/λe, and κS ∈
(0, 1] is the spatial richness of the scattering environment. Note that the SDOF

is independent of the number of antennas of the system, and gives the maximum

number degrees of freedom available given the spatial constraints imposed by the

channel. In comparison to the i.i.d. case, the maximum number of independent

sub-channels of a spatially constrained MIMO system is now min{nT, nR, SDOF}.

4.5 Summary and Contributions

The previous two chapters have shown that the spatial properties of the channel will

have significant impact on the capacity of multi-antenna systems. A good under-

standing of these properties is required for effective design and implementation of
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wireless MIMO systems. Responding to this need, in this chapter a general channel

model which includes the spatial aspects of a MIMO system was developed for both

2D and 3D scattering environments. The spatial channel model developed includes

the physical parameters of arbitrary antenna configurations and a tractable param-

eterization of the complex scattering environment. Furthermore, by exploiting the

properties of plane waves the channel is decomposed to emphasize the individual

contributions of the arrays and the scattering environment.

Some specific contributions made in this chapter are:

1. The extensively used plane wave in channel modelling is represented as a

truncated modal expansion in the 2D and 3D cases. The truncation point is

shown to give a small error which exponentially decreases as more terms are

added.

2. A 2D and 3D channel model is developed, which models the spatial channel

for any antenna configurations within spatial apertures connected by any

general scattering environment.

3. Using the plane wave truncations, the channel model is decomposed into three

distinct regions of signal propagation: free-space transmitter, free-space re-

ceiver, and the scattering environment connecting them. For fixed array

geometries within the transmit and receive apertures, the free-space trans-

mitter and receiver component of the model are constant, with the random

scattering component modelled by a tractable parameterization.

4. The concept of spatial degrees of freedom (SDOF) is introduced. The number

of available free parameters of the spatial channel is given by the size of the

transmit and receive apertures along with the scattering environment. A

stricter definition of the richness of a scattering environment is defined which

depends on the size of the apertures, in contrast to previous work where it

has been considered independent of the antenna arrays.



Chapter 5

Capacity of Spatially Selective

Channels

This chapter numerically verifies the theoretical statements made in the previous

chapters. Using the model presented in Chapter 4, various aperture and scattering

scenarios are explored. For simplicity, the numerical results are restricted to the

2D model. For comparison between the different numerical scenarios it is assumed

nT = nR = 6, rT = rR = 0.5λ and SNR is 10dB whenever these variables are not

being studied.

5.1 MIMO Model and Channel Rank

Consider a MIMO system consisting of nT transmit antennas and nR receive an-

tennas within circular apertures of radius rT and rR, respectively, along with the

2D channel model developed in Chapter 4.2. Using this model the channel matrix

can be decomposed to give

H = JRHSJ
†
T, (5.1)

where JT is the transmit aperture sampling matrix (4.55), JR is the receive aper-

ture sampling matrix (4.56), and HS is the scattering environment matrix.

The random complex scattering environment matrix HS describes the scat-

tering environment through which the apertures communicate. The rank of HS

gives the effective number of independent communication modes the scattering can

support for given transmit and receive aperture size. Consider the elements of

HS as zero mean i.i.d. complex Gaussian, then HS is a full rank matrix giving

103
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spatial richness factor κS = 1 and the maximum SDOF (4.84) for a the givien

aperture sizes. This is shown pictorially in Fig. 5.1(a), where there is isotropic

scattering around both apertures and throughout the rest of space. Conversely, a

rank one HS occurs for fully correlated zero mean identically distributed complex

Gaussian elements, HS ∼ CN (0,1), giving minimum spatial richness and offering

only one SDOF. Figure 5.1(c)–(e) shows three possible scattering environments for

rank one scattering matrices; (c) isotropic scattering surrounding both apertures,

with limited scattering in between, (d) limited angular spread at one aperture, and

(e) limited angular spread at both apertures. Note that channels exhibiting the

scattering shown in Fig. 5.1(c) are often referred to as a pin-hole or key-hole chan-

nels, where there is only a single communication channel through the scattering

environment [74,105], these rare channels are explored further in Section 5.3.

The ergodic capacity for the two extreme scattering cases (full rank and rank

1 HS) is shown in Fig. 5.2 for increasing SNR. The antennas nT = nR = 6 are

arranged as UCAs constrained within the transmit and receive apertures of radius

of either 0.5λ or 0.01λ. In the case of large apertures and full rank scattering the

capacity is nearly that of the i.i.d. capacity shown as a dashed line. However, if

either an aperture is made small, or the channel is scattering deficient the ergodic

capacity is significantly reduced, with approximately the same capacity for all cases.

Note that the rank of the transmit and receive sampling matrices, JT and JR,

respectively, is reduced to 1 for radius 0.01λ, therefore, Fig. 5.2 shows that the

ergodic capacity is dominated by the overall channel rank

rank(H) = min{rank(JT), rank(JR), rank(HS)}, (5.2)

or equivalently the SDOF of the spatial channel.

Although the ergodic capacity is governed by the overall rank, the outage ca-

pacity will depend on which component of the channel loses rank. The CDF of the

capacity for the same scenarios as Fig. 5.2 is shown in Fig. 5.3 for SNR of 10dB.

Here it can be seen that the outage capacity is governed not only by the overall

channel rank loss but is also dependent on the location of the rank loss (transmit-

ter, receiver, or scattering - see Fig. 5.1). From Fig. 5.3 it can be seen that there

are three distinct causes of reduced outage capacity, (a) loss of rank in one loca-

tion (receiver or scattering)1, (b) loss in two locations (transmitter and receiver,

1Note that due to the reciprocity property, for the same scattering identical capacity is given
regardless of whether we consider transmit or receive rank loss (i.e., rT = 0.5λ, rR = 0.01λ
or rT = 0.01λ, rR = 0.5λ). Therefore, without loss of generality we consider only the receive
aperture.
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(a)

(b)

(c) (d)

(e)

Figure 5.1: Spatial model interpretation. Dark grey circles represent apertures and
light grey represents scattering: (a) full rank, (b) loss in aperture rank, (c)–(e) loss
in scattering rank
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or receiver and scattering), or (c) loss in three locations (transmitter, receiver and

scattering). In the first two cases, a loss in scattering rank results in the lowest

outage capacity for that case, due to a loss of scattering diversity (increased fading

correlation) resulting in lower diversity for the overall channel. The worst capacity

occurs for (c) where there is no diversity provided by either transmitter or receiver

array and insufficient scattering gives correlated fading.

Similar results regarding the outage capacity behavior have been presented

in [121] using a discrete scattering model described in [105]. As antennas con-

strained within a very small aperture will be highly correlated, it is straightfor-

ward to see how these two models give rise to identical results. In fact, with some

limiting assumptions on the scattering environment, the channel model presented

in [105] can be shown to be a special case of the model developed in Chapter 4.

This connection is made more apparent with the work in Section 5.3.

These results indicate that the spatial constraints imposed by the scattering

and apertures effects the ergodic and outage capacity differently. Therefore, in the

following sections these constraints are further studied independently.

5.2 Capacity - Aperture Effects

In this section the effects of antenna geometry and aperture size on capacity are

studied. To remove any scattering effects the scattering environment is assumed

rich in all cases, e.g., κS = 1. The effects of the scattering environment on capacity

can be found in Section 5.3.

5.2.1 Antenna Saturation

In Chapter 3 an antenna saturation effect was shown for spatially constrained arrays

at one end of the communication link, with the other end assumed unrestricted.

In this section the capacity of a MIMO system for increasing numbers of antennas

is investigated for both transmit and receive arrays constrained within separate

apertures of finite size.

Figure 5.4 shows the capacity growth with increasing numbers nT = nR of

antennas within transmit and receive apertures of radius rT = rR = 0.5λ, for the

ULA and UCA. As was shown in Chapter 3, the capacity suffers a saturation in

the number of antennas whereby further antennas fail to give further capacity gain.

Also shown is the antenna saturation when the receive aperture radius is reduced to

rR = 0.25λ for the same size transmit aperture rT = 0.5λ. In this case the saturated
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capacity for both array types is lower, as expected, since the SDOF of the channel

will be reduced. For this example rT = rR = 0.5λ, κS = 1 giving SDOF = 11,

whereas rT = 0.5λ, rR = 0.25λ, κS = 1 gives SDOF = 7. Hence the capacity of the

system is upper bounded by the smallest ‘communications pipe’, that is, even if

the scattering and transmit aperture can offer significant throughput, the capacity

of the system will be limited by the low throughout of the receiver aperture. Hence

an upper bound on capacity can be given by the compound bound

Cmax = min{Csat(rT), Csat(rR), CS(κS)}, (5.3)

where Csat(rT) and Csat(rR) are the saturated capacity bounds derived in Chap-

ter 3.3.2 for the transmit and receive apertures, respectively, and CS(κS) is the

maximum throughput of the scattering environment parameterized by the spatial

richness factor κS. Similar arguments are proposed in [72] for an upper bound on

ergodic capacity using a compound bound based on the individual transmit and

receive branch correlations, however, as mentioned previously these provide little

physical intuition into the aspects affecting capacity.
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5.2.2 Aperture Size

From the previous arguments and from the results of Chapter 3, the aperture size

plays a dominant role in the capacity of a MIMO system. Consider 6 antenna

arrays within transmit and receive apertures of radius rT and rR with an isotropic

scattering environment, κS = 1. The capacity growth of this scenario with increas-

ing aperture radii rT = rR is shown in Fig. 5.5 for the ULA and UCA arrays. As

the apertures are made larger, both the ULA and UCA capacities approach that

of the 6 × 6 i.i.d. case shown as a dashed horizontal line. Note that, as observed

in Chapter 2, the spatial correlation between antennas does not decrease mono-

tonically with antenna separation, therefore, in certain scenarios increasing the

aperture radius may actually increase the spatial correlation leading to a reduction

in capacity. The capacity growth as the aperture radius is increased is due to an

increase in the SDOF of the channel, due to an increase in the effective parallel

sub-channels between the arrays. This is best observed by considering the singular

values of the channel matrix H .

Figures 5.6 and 5.7 show the probability distributions (PDF’s)2 of the ordered

singular values of the channel matrix H for the ULA and UCA, respectively. As

2Generated from 10,000 realizations of the random channel matrix H and scaled for display
purposes.
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the radius of the apertures are increased it can be observed that the median of

the dominant singular value µ1 is decreased, conversely, the medians of µk, k > 1

increase. Also observe that the separation of the singular values or difference

between µk and µk+1 decreases for all k as the aperture size is increased. Therefore

the growth in capacity seen in Fig. 5.5 is due to the decrease in statistical disparity

among the singular values, i.e., the disparity among the subchannels decreases

giving a larger set of significant subchannels which to communicate on.

The convergence of the singular values is shown in Figures 5.8 and 5.9 for the

ULA and UCA, respectively. Here as the radii are increased the medians of the

singular values µk, k > 1 monotonically increase towards 1, whilst the median of

the dominant singular value µ1 decreases towards 1.

Note that the capacity difference between the ULA and UCA for increasing radii

can be seen in the pdf’s of the singular values of H . Observe that in Fig. 5.6(b)

there are less singular values with median over 0dB than the UCA case shown

in Fig. 5.7(b) for the same radii. Hence the ULA has less subchannels with signif-

icant gain than a UCA within the same aperture size, thereby resulting in lower

capacity. This clearly seen in Figures 5.8 and 5.9 by observing the curves of the

median eigenvalues of the two arrays for the same aperture radii (note the radius

scale is not the same for both the ULA and UCA). The effects of array geometry

on capacity are discussed in detail in Chapter 6.2.

5.3 Capacity - Scattering effects

In this section the effects of the scattering environment on the capacity is studied.

To compare environments, nT = nR = 6 antennas are fixed within apertures of

radius rT = rR = 0.5λ for all simulations.

5.3.1 Discrete Channel Representation

Consider the physical finite scatterers model, where each path is indexed by s and

has a defined AOD φs and AOA ψs along with a complex random path gain gs

due to the scatterers. For nS paths, the scattering channel is given by the discrete

representation

g(φ, ψ) =

nS∑
s=1

gs δ(φ− φs) δ(ψ − ψs). (5.4)
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Using this discrete channel the p, q-th element of the scattering environment matrix

becomes

HS|p,q =

∫∫

S1
g(φ, ψ) ei(q−NT−1)φ e−i(p−NR−1)ψdφdψ (5.5a)

=

nS∑
s=1

gs

∫

S1
δ(φ− φs)e

i(q−NT−1)φdφ

∫

S1
δ(ψ − ψs)e

−i(p−NR−1)ψdψ (5.5b)

=

nS∑
s=1

gse
i(q−NT−1)φse−i(p−NR−1)ψs , (5.5c)

which gives the discrete scattering environment matrix decomposition

HS = ΦΛSΨ
†, (5.6)

where Ψ is the (2NT + 1)× nS matrix

Ψ =




eiNTφ1 eiNTφ2 · · · eiNTφnS

ei(NT−1)φ1 ei(NT−1)φ2 · · · ei(NT−1)φnS

...
...

. . .
...

e−iNTφ1 e−iNTφ2 · · · e−iNTφnS




, (5.7)

Φ is the (2NR + 1)× nS matrix

Ψ =




eiNRψ1 eiNRψ2 · · · eiNRψnS

ei(NR−1)ψ1 ei(NR−1)ψ2 · · · ei(NR−1)ψnS

...
...

. . .
...

e−iNRψ1 e−iNRψ2 · · · e−iNRψnS




, (5.8)

and ΛS is a nS × nS diagonal matrix

ΛS = diag ([g1, g2, . . . , gnS
]) . (5.9)

It is further assumed that the path gains {gs}nS
s=1 are independent complex Gaus-

sian variables, i.e., the scatterers model an independent Rayleigh multipath envi-

ronment. As with previous chapters the channel gains are normalized such that

∫∫

S1
G(φ, ψ) dφ dψ = 1, (5.10)
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where G(φ, ψ) = E
{|g(φ, ψ)|2}, which for the discrete channel representation gives

∫∫

S1
G(φ, ψ) dφ dψ =

∫∫

S1

nS∑
s=1

E
{|gs|2

}
δ(φ− φs) δ(ψ − ψs) dφ dψ (5.11a)

=

nS∑
s=1

E
{|gs|2

}
. (5.11b)

Assuming on average all paths have the same gain, the equivalent discrete normal-

ization to the continuous case (5.10) gives path gains

E
{|gs|2

}
=

1

nS

. (5.12)

The capacity of 6 antenna ULA and UCAs within apertures of radius rT =

rR = 0.5λ are shown in Fig. 5.10 for increasing nS. As the number of paths is

increased, the capacity approaches that of the infinite paths case, given by the

continuous g(φ, ψ), shown as horizontal lines on the graph. Observe that the sig-

nificant growth in capacity occurs for increasing number of paths up until nS = 11,

which corresponds to the SDOF for this scenario. This is better observed by con-

sidering the ordered singular values of the scattering environment matrix HS (5.6)

shown in Fig. 5.11. Here the effect of increasing capacity with the number of paths

is clearly reflected in a corresponding increase in the number of significant singu-

lar values for the channel. Every significant singular value represents an available

parallel sub-channel through the scattering environment with associated gain µ2
n.

5.3.2 Angular Spread

In the previous section the scattering was modelled using discrete scatterers, here

a statistical model of the scattering environment is employed. Consider a modal

fading model with the following properties:

1. The correlation between the fading from transmit modes n and n′ to the same

receive mode m does not depend on the receive mode.

2. Similarly, the correlation between the fading from a transmit mode n to

receive modes m and m′ does not depend on the transmit mode.

3. The correlation between the fading of two distinct mode pairs is the product

of the corresponding transmit mode correlation and receive mode correlation.
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Assumptions 1 and 2 are usually quite accurate when the apertures are well sep-

arated with sufficient local scattering at each aperture. The final assumption can

be thought of as a first-order approximation of the correlation structure when the

fading from two transmit modes to the same receive mode and the fading from

two receive modes to the same transmit mode is much more correlated than that

between two distinct mode pairs [10].

Consider zero mean identically distributed Gaussian elements βn
m ∈ N (0, 1) of

the scattering matrix HS, then following the above fading assumptions the cross

correlation may be expressed as

E
{

βn
mβn′

m′

}
, γn,n′,m,m′ (5.13a)

= γT
n−n′γ

R
m−m′ , (5.13b)

where γT
n−n′ is the transmit aperture modal correlation between modes n and n′,

and γR
m−m′ is the receive aperture modal correlation between modes m and m′. The

scattering channel matrix HS can now be decomposed as

HS = Γ
1/2
R H0Γ

1/2
T , (5.14)

where ΓT is the (N ×N) transmit modal correlation matrix

ΓT =




γT
0 γT

1 · · · γT
2NT

γT
−1 γT

0 · · · γT
2NT−1

...
...

. . .
...

γT
−2NT

γT
−2NT+1 · · · γT

0




, (5.15)

and ΓR is the (M ×M) receive modal correlation matrix

ΓR =




γR
0 γR

1 · · · γR
2NR

γR
−1 γR

0 · · · γR
2NR−1

...
...

. . .
...

γR
−2NR

γR
−2NR+1 · · · γR

0




, (5.16)

and H0 is a (M×N) matrix with identically distributed complex Gaussian entries.

Note that Γ
1/2
T is the principle square root of matrix ΓT, such that Γ

1/2
T Γ

1/2
T = ΓT.

Depending on the angular spread the modal correlation matrices ranges between

the two extreme cases of the rank one all ones matrix (narrow angular spread) and

the full rank identity matrix (wide angular spread).
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The channel matrix product (5.1) can now be expressed as

H = JRΓ
1/2
R H0Γ

1/2
T J †

T, (5.17)

which shows the independent effects of antenna placement and aperture size (JT

and JR), angular spread around the apertures (Γ
1/2
T and Γ

1/2
R ), and the rest of the

scattering environment (H0). Note the spatial richness of the channel κS is now

governed by angular spread at each aperture and the scattering throughout the

rest of the channel.

Using this model a wide range of scattering scenarios can be considered:

1. Full diversity (full rank ΓT,ΓR, and H0): this channel is shown in Fig. 5.1(a)

and corresponds to a sufficiently rich scattering environment, full rank H0 ∼
CN (0, I), with isotropic scattering surrounding both the transmit and receive

apertures, ΓT = I, ΓR = I.

2. Pin-hole (full rank ΓT,ΓR, rank one H0): this channel is shown in Fig. 5.1(c),

where there is isotropic scattering surrounding both the transmit and receive

apertures, however there is only a single communication channel between the

local scatterers at each end of the link, H0 ∼ CN (0,1). Such channels have

been shown to exist for large separation between transmit and receive ar-

rays [30, 65]. In [122] it was shown that these degenerate channels may arise

from diffraction effects of buildings. However, although pin-hole channels

have been shown to exist in theory, to the author’s knowledge no observa-

tions of these degenerate channel effects from practical measurements have

appeared in the literature.

3. Small Angular Spread (full rank H0, rank one ΓT or ΓR): this channel cor-

responds to Fig. 5.1(d) where there is low angular spread at one aperture,

ΓT = 1, with isotropic local scattering at the other, ΓR = I, and suffi-

cient global scattering. This channel is the most common channel in mobile

systems, where the base station is mounted high above the scattering envi-

ronment and has low angular spread, whilst the user is surrounded by dense

scattering at street level. Note if both apertures experience low angular

spread, Fig. 5.1(e), the channel is another case of a low diversity channel.

4. Low Diversity (rank one H0, rank one ΓT or ΓR or both): these channels are

pin-hole channels with low angular spread at either or both apertures, given

by Fig. 5.1(c) in combination with Fig. 5.1(d) or Fig. 5.1(e). This channel
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represents the worst possible channel for MIMO systems, providing ergodic

capacity of a SISO system and giving no diversity gains (low outage capacity).

The ergodic and outage capacity for nT = nR = 6 antenna UCAs within aper-

tures of radius rT = rR = 0.5λ and the various scattering scenarios are shown

in Fig. 5.12 and Fig. 5.13, respectively. As with the results in Section 5.1, the er-

godic capacity is invariant to the matrix or matrices which lose rank. However, the

outage capacity strongly depends on where the channel is degenerate. Not surpris-

ingly, the outage capacity curves are very similar to those in Fig. 5.3, since small

angular spread is equivalent to decreasing the aperture size, as both increase the

branch correlation, thereby reducing the number of significant subchannels between

the arrays.

Finally, the capacity for angular spreading within the extreme examples shown

above is considered. Figure 5.14 shows the ergodic capacity of UCAs within aper-

tures rT = rR = 0.5λ for increasing angular spread at the transmitter ∆T for various

receiver angular spreads ∆R, for uniform limited scattering fields and full rank H0.

As with the capacity for various apertures sizes, it can be seen that the capacity

is limited by the aperture with the smaller angular spread. Figure 5.15 shows the

CDF of the capacity for the pin-hole channel for the same angular spreading at

the receiver ∆R as in Fig. 5.14 for small angular spread, ∆T = 10◦, and isotropic

scattering ∆T = 180◦, at the transmitter. It can clearly be seen that regardless of

the angle spread at the receiver, the overall channel provides no diversity for small

transmit angular spreads.

5.4 Summary and Contributions

In this chapter, the MIMO model developed in Chapter 4 was simulated for a wide

range of apertures and scattering environments. Many of the scenarios studied

were chosen to verify the theoretical results of previous chapters. However, almost

all scattering and array geometries can be studied in depth using this model. As

we have seen, the model can represent practically all scattering environments and

antenna array geometries presented in the literature in a simple tractable form.

Furthermore, unlike many other models, significant theoretical insights into the

capacity of a spatially constrained systems can be obtained without the need for

extensive simulations, as seen in Chapter 3, and to follow in Chapter 6.

Some specific contributions made in this chapter are:
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mitter ∆T and receiver ∆R for the same scenario as Fig. 5.14 with rank one H0.
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1. The ergodic and outage capacity were shown to have different responses to

the loss in channel rank. Whilst small apertures at the transmit or receiver,

or a low scattering richness factor gives approximately the same reduction of

the ergodic capacity from that of a full diversity system, the outage capacity

was shown to be highly dependent on where the channel was degenerate. In

particular, a loss in spatial richness impacted the outage capacity the most.

2. The effects of increasing the numbers of antennas within constrained aper-

tures at both ends of the channel were considered. Similar to the results

in Chapter 3, the capacity suffered a saturation in the number of antennas,

where more antennas failed to give further capacity gains. It was shown that

the smallest aperture limits the overall capacity of the channel.

3. The singular values of the channel matrix were shown to have less disparity

as the apertures were increased in size, for fixed numbers of antennas. This

leads to a lowering of the disparity amongst the subchannels giving a larger

set of significant subchannels which to communicate on and hence an increase

in capacity.

4. A discrete scattering model was developed, where the scattering environment

was modelled by a distinct number of paths between the apertures. Sim-

ulations showed that as the number of paths (i.e., scatterers) is increased

the capacity converged to the continuous model case, supporting the spatial

richness proposition in Chapter 4, where it is argued that sufficient channel

‘richness’ is related to the aperture size.

5. Angular spread surrounding both the transmitter and receiver was intro-

duced into the model under the assumption of independent local scattering.

Angular spread is shown to increase the modal correlation at each end of

the communications link, thereby reducing the capacity. Using the angular

spread model, many scattering scenarios are studied, and the generic nature

of the model is revealed.



Chapter 6

Intrinsic Capacity of Continuous

Space Channels

The previous chapters have shown that there is a limit to communication when

the antennas are restricted to within spatially constrained apertures. This limit

has been shown to be independent of the number of antennas and relates only to

the characteristics of the spatial channel, that is, the size of the apertures and the

scattering environment.

In this chapter a new framework is developed for computing the capacity of

spatially constrained channels which is independent of the transmit and receive

antenna configuration and signal processing. This capacity represents the funda-

mental or intrinsic capacity between two continuous apertures in space, and MIMO

can be considered as an implementation, where the apertures are sampled such that

the discrete system approaches the limits of the continuous space channel.

6.1 Mode-to-Mode Communication

In the previous chapters it has been shown that the rank of the channel matrix H

gives the effective number of independent parallel channels between the transmit

and receive antenna arrays, and thus determines the capacity of the system. For the

channel matrix decomposition derived in Chapter 4, H = JRHSJ
†
T, the channel

rank is given by

rank(H) = min{rank(JT), rank(JR), rank(HS)} (6.1a)

≤ rank(HS). (6.1b)

123
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Let N and M denote number of significant transmit and receive aperture modes,

respectively1, then equality in (6.1b) is achieved for nT ≥ N , nR ≥ M . Therefore,

as discussed in Chapter 4 and verified in Chapter 5, the number of available modes

for the transmit and receive apertures, determined by the size of the apertures,

and any possible modal correlation or key-hole effects [74], limit the capacity of the

system, regardless of how many antennas are packed into the apertures.

From (6.1b) and assuming no array gain effects, the maximum mutual infor-

mation between the two apertures can be achieved with a minimum of N and M

antennas within the transmit and receive apertures, respectively. Therefore, as-

sume nT = N and nR = M antennas can be optimally placed2 within the transmit

and receive apertures of radius rT and rR, respectively. In this situation J †
TJT = I

and J †
RJR = I, hence the transmit and receive aperture sampling matrices are

unitary and HS is then unitarily equivalent to H . The instantaneous normalized

channel capacity is then given by

C = log

∣∣∣∣InR
+

η

nTnR

HH†
∣∣∣∣ (6.2a)

= log
∣∣∣IM +

η

NM
HSH

†
S

∣∣∣ , (6.2b)

where η is the average SNR at any antenna within the receive aperture.

The mode-to-mode capacity (6.2b) represents the intrinsic capacity for com-

munication between two spatial apertures, giving the maximum capacity for all

possible array configurations and array signal processing. For the circular and

spherical apertures we have NT = dπerT/λe and NR = dπerR/λe (see Chapter 4),

and it can be seen that the intrinsic capacity is limited by the size of the apertures

containing the antenna arrays (number of available modes), and the statistics of

the scattering channel matrix HS (modal correlation).

The CDF of the mode-to-mode capacity (6.2b) is shown for increasing aperture

radius r = rT = rR in Fig. 6.1 and Fig. 6.2 for the circular and spherical apertures,

respectively, within an isotropic scattering environment. Both the outage and mean

capacity increase for increasing radii (increased number of modes).

Consider an increasing transmit aperture (rT → ∞), then by the law of large

numbers 1
N

HSH
†
S → IM almost surely as N gets large. Thus the capacity (6.2b)

1e.g., for circular apertures N = 2NT + 1, M = 2NR + 1, and for spherical apertures N =
(NT + 1)2, M = (NR + 1)2.

2For now, it is sufficient to consider optimally placed antennas as array geometries within the
aperture such that the array excites N (resp. M) uncorrelated modes, this is discussed in more
detail in Section 6.2
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for large rT is given by

lim
rT→∞

C = M log(1 +
η

M
), (6.3)

which, as shown in Chapter 3.3.4, for large rR converges to

lim
rT,rR→∞

C = Climit , η

ln 2
, (6.4)

giving the upper limit on capacity for all communication schemes in AWGN chan-

nels. The capacity limit Climit ≈ 14.47bps/Hz for 10dB SNR is shown as a dashed

line in the capacity curves of Fig. 6.1 and Fig. 6.4, and is approached as the size of

the apertures increases. It is interesting to note that a spherical aperture of radius

1.5λ is within 10% of the upper limit on capacity, whereas the circular aperture

requires a radius of over 10λ to achieve the same capacity, clearly showing the

capacity gains due to an increase in SDOF for higher dimensional apertures.

Figures 6.3 and 6.4 show the ergodic mode-to-mode capacity of the circular

and spherical apertures, respectively, for increasing spatial richness κS (4.83) of

various array radii r = rT = rR. As expected, for an increase in spatial richness

the capacity of the system grows as the scattering environment can support more

parallel sub-channels. For small a spatial richness factor, κS → 0, the scattering

environment is sparse and only a single sub-channel is available for communication,

hence the capacity converges to that of a SISO system, i.e.,

lim
κS→0

C = log(1 + η), (6.5)

which for SNR 10dB is approximately 3.45bps/Hz.

6.1.1 Mode Excitation

Although the modes considered here are generated from spatially constrained an-

tenna arrays, recent advances in multi-mode antennas allow for the excitation of

several modes of the same frequency on a single antenna. From electromagnetic

antenna theory, several modes or solutions can exist at the same time on the same

structure. In fact, it is possible to excite several modes at the same temporal

frequency on the one antenna, and regard these as separate antenna elements.

However, utilizing the higher order modes of antennas have not received much

attention. For microstrip antennas, the fundamental mode has dominated the lit-

erature, however, higher order modes have been considered in a limited number of
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Figure 6.1: CDF of capacity for mode-to-mode communication for circular aper-
tures of increasing radius r = rT = rR with SNR 10dB.
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Figure 6.3: Ergodic capacity for mode-to-mode communication for circular aper-
tures of various radii r = rT = rR with increasing spatial richness κS and SNR
10dB.
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publications (e.g., [123–126]). Subsequently, in [127], a circular microstrip antenna

employing higher order modes, was designed based on an element figure of merit

that was introduced in [128]. More recently, a modified biconical antenna employ-

ing several modes to form directional beams was developed in [129]. Currently, the

microstrip and biconical elements appear to be the only antennas that have been

used to excite multiple modes in the context of beamforming and diversity. These

two antenna structures have recently been shown to offer MIMO capacity gains

similar to that of an antenna array [130], and show significant promise for future

MIMO implementation.

Regardless of the method of excitation, the number of effective modes will be

restricted by the geometrical properties of the antenna(s), and the capacity of the

system limited by the statistics of the mode-to-mode channel matrix HS. There-

fore, the mode-to-mode capacity (6.2b) represents an intrinsic, or fundamental

capacity for spatially constrained MIMO systems.

The radiation pattern of the first 6 modes of the circular and spherical apertures

are shown in Fig. 6.5 and Fig. 6.6, respectively. Due to the orthogonality of the

basis functions, each mode has a unique radiation pattern, therefore, mode-to-

mode communication is effectively a pattern diversity scheme [97], where the signals

obtained by different modes may be combined to yield a diversity gain. However,

the level of diversity achieved (and subsequently the multiplexing gain) depends

on the correlation between the modes and is strongly dependent on the scattering

environment, as shown in the following section.

6.1.2 Properties and Statistics of Scattering Channel Ma-

trix HS

Consider a 2D scattering environment, where the 2D Fourier series expansion of

the periodic scattering gain function g(φ, ψ) is given by

g(φ, ψ) =
1

4π2

∞∑
n=−∞

∞∑
m=−∞

βn
me−inφeimψ, (6.6)

with coefficients

βn
m =

∫∫

S1
g(φ, ψ)einφe−imψdφdψ. (6.7)
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Figure 6.5: Radiation patterns of the first six modes of a circular aperture,
R{einφ}2.

Let n = q−NT− 1, and m = p−NR− 1 denote the transmitter mode and receiver

mode index, respectively, then the scattering environment matrix coefficients are

given by

HS|p,q = βq−NT−1
p−NR−1 = βn

m. (6.8)

Thus the random scattering environment can be parameterized by the complex

random coefficients βn
m, n ∈ {−NT, . . . , NT}, m ∈ {−NR, . . . , NR}, which gives the

scattering gain between the n-th transmit mode and the m-th receive mode, and

HS becomes

HS =




β−NT
−NR

· · · βNT
−NR

β−NT
−NR+1 · · · βNT

−NR+1
...

. . .
...

β−NT
NR

· · · βNT
NR




. (6.9)

Assuming a zero-mean uncorrelated scattering environment (Rayleigh), the

scattering channel is characterized by the second-order statistics of the scatter-
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Figure 6.6: Radiation patterns of the first six modes of a spherical aperture
R{Y m

n (φ̂)}2.

ing gain function g(φ, ψ),

E
{

g(φ, ψ)g(φ′, ψ′)
}

= G(φ, ψ)δ(φ− φ′)δ(ψ − ψ′), (6.10)

where δ(·) is the Kronecker delta function, and G(φ, ψ) = E
{|g(φ, ψ)|2} is the 2D

power spectral density (PSD) of the modal correlation function,

γn−n′,m−m′ , E
{

βn
mβn′

m′

}

=

∫∫

S1
G(φ, ψ)ei(n−n′)φe−i(m−m′)ψdφdψ, (6.11)

and represents the scattering channel power over departure and arrival angles φ

and ψ, normalized such that the total scattering channel power

σ2
HS

=

∫∫

S1
G(φ, ψ)dφdψ = 1. (6.12)

For the special case of uniform PSD, G(φ, ψ) = 1/4π2, the modal correlation
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becomes

γn−n′,m−m′ = γ0,0 δ(n− n′)δ(m−m′), (6.13)

corresponding to the i.i.d {βm
n } case.

6.1.3 Modal Correlation in General Scattering Environ-

ments

Define P(ψ) as the average power density of the scatterers surrounding the receiver,

given by the marginalized PSD

P(ψ) ,
∫

S1
G(φ, ψ) dφ, (6.14)

then, from (6.11) the modal correlation between the m and m′ communication

modes at the receiver is given by

γR
m−m′ =

∫

S1
P(ψ)e−i(m−m′)ψdψ, (6.15)

which gives the modal correlation for all common power distributions P(ψ): von-

Mises, gaussian, truncated gaussian, uniform, Laplacian, piecewise constant, poly-

nomial, Fourier series expansion, etc. Similarly, defining P(φ) as the power density

of the scatterers surrounding the transmitter, we have the modal branch correlation

at the transmitter

γT
n−n′ =

∫

S1
P(φ)ei(n−n′)φdφ. (6.16)

As shown in Chapter 2 there is very little variation in the correlation due

to the various non-isotropic distributions mentioned above, therefore without loss

of generality, consider the case of energy arriving uniformly over limited angular

spread ∆ around mean ψ0, i.e., (ψ0−∆, ψ0 +∆). In this case the modal correlation

is given by

γR
m−m′ = sinc((m−m′)∆)e−i(m−m′)ψ0 , (6.17)

which is shown in Fig. 6.7 for various modes and angular spread. As one would

expect, for increasing angular spread there is a decrease in modal correlation, with

more rapid reduction for well separated mode orders, e.g., large m −m′. For the
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Figure 6.7: Modal correlation versus angular spread ∆ of a uniform limited power
density surrounding the aperture.

special case of a uniform isotropic scattering environment, ∆ = π, there is zero

correlation between all modes, e.g., γR
m−m′ = δ(m−m′).

Figure 6.8 shows the impact of modal correlation on the ergodic mode-to-mode

capacity for increasing angular spread at the transmitter and isotropic scattering

at the receiver3 for 10dB SNR. The transmit and receive apertures are of radius

0.8λ, corresponding to 2dπe0.8e+1 = 15 modes at each aperture. For comparison,

also shown is the capacity for an 15 antenna uniform linear (ULA), uniform circular

(UCA), and uniform grid (UGA) arrays, contained within the same aperture size.

Also shown is the 15× 15 antenna i.i.d. case, corresponding to the rich scattering

environment with no restrictions on the antenna placement, i.e., rT, rR →∞.

The mode-to-mode capacity is the maximum achievable capacity between the

two apertures, and represents the upper bound on capacity for any antenna array

geometry or multi-mode antennas constrained within those apertures. All four

cases show no capacity growth for angular spread greater than approximately 60◦,

which corresponds to low modal correlations (¿ 0.5) for the majority of modes, as

seen in Fig. 6.7.

Figure 6.9 shows ergodic capacity as the mean angle of departure φ0 is var-

ied from 0 to 90◦ with transmit angular spread of 20◦, and the same scenario as

3This models a typical mobile communication scenario, where the receiver is usually sur-
rounded by scatterers, and the base station is mounted high above the scattering environment.
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in Fig. 6.8. It can be seen that the mode-to-mode, UCA, and UGA are invariant to

mean departure angle. However, due to the linear array sampling along one dimen-

sion, the capacity of the ULA decreases as φ0 approaches the inline case (φ0 = 0◦),

where the antenna array offers little diversity.

In this section the properties of the scattering channel matrix for 2D scattering

environments where explored. Similar, albeit more tedious, expressions for the

3D case can also be derived, however, no further insights are gained and they are

therefore not presented here.

6.2 Sampling Effects on Capacity

Implementation of a MIMO system requires sampling of the transmit and receive

apertures by antenna arrays. The mode-to-mode capacity is the maximum capacity

between the two apertures, however, the ULA, UCA and UGA give significantly

lower capacity due to poor spatial-to-mode coupling for the given aperture. To

observe this, consider the signal transmitted by the n-th mode generated by nT

antennas contained within an aperture of radius rT

x̃n =

nT∑
t=1

xtJn(xt). (6.18)

Note that (6.18) represents both the 2D and 3D cases, as the 3D spatial-to-mode

function (4.70) can be expressed as Jp(x) ≡ Jm
n (x) where p = n(n + 1) + m with

inverse n = b√pc and m = p − b√pc(b√pc + 1), e.g., p = 10 gives n = 3 and

m = −2, i.e., J10(x) = J −3
2 (x).

The power radiated by the n-th mode is then

σ2
n = E

{|x̃n|2
}

(6.19a)

=

nT∑
t=1

nT∑

t′=1

E {xtxt′}Jn(xt)Jn(xt′) (6.19b)

=
PT

nT

nT∑
t=1

|Jn(xt)|2 , (6.19c)

where (6.19c) follows from the assumption of transmit antennas with statistically

independent equal power transmit signals, with total power PT, i.e., E
{|xt|2

}
=

PT/nT. Note that, since the spatial-to-mode function Jn(xt) ≈ 0 for all but the

first N terms, only the first N modes have sufficient power to convey information at
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Figure 6.8: Capacity versus angular spread at the transmitter for mode-to-
mode communication (modes), uniform linear array (ULA), uniform circular array
(UCA), and uniform grid array (UGA), within spatial regions of radius 0.8λ and
isotropic receiver scattering.
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any significant rate. Therefore, the antenna array excites N modes of the aperture

with the power allocated to each mode given by (6.19c). The reception of energy

at the receiver uses the same kind of structure as excitation, and is just the reverse

process. The antenna array within the receive aperture combines the signals on

the M modes with weighting

σ2
m =

PR

nR

nR∑
r=1

|Jm(yr)|2 , (6.20)

given to the m-th mode, where PR is the total received power.

In MIMO systems, maximum diversity occurs when there are independent trans-

mit and receive branches, therefore, the maximum capacity will occur for equal

power allocation to the full set of uncorrelated modes available for the given aper-

ture size. That is, for arrays within fixed apertures, ideal spatial-to-mode coupling

occurs for antenna array geometries such that they excite N and M independent

modes with uniform power allocation given by σ2
n = PT/N and σ2

m = PR/M , at

the transmit and receive apertures, respectively.

Fig. 6.10 shows the power allocation to each mode by the three array geometries

considered in the previous section, relative to uniform power allocation of 0dB

to each mode for ideal spatial-to-mode coupling in a 2D aperture. Recall from

Chapter 3.3.2 that due to symmetry a fixed linear aperture (e.g., sampling along

a line of length 2rT) can only excite NT + 1 independent modes, therefore the

ULA only allocates power to the n = {0, . . . , NT} modes, giving the poor capacity

performance seen in Fig. 6.8. From the UCA and UGA distributions one would

expect the UGA to perform better than the UCA, however, although the UCA is

less uniform at the lower order modes, it has 5-10dB more power allocated to the

higher order modes than that of the UGA. As shown in Section 6.1.3, well separated

modal orders have lower correlation than small modal separation at small angular

spreads, hence the UCA distribution predicts better capacity performance for low

angular spread, as seen in Fig. 6.8.

Note that the nulls in the power allocation for the UCA at modes |n| = 2 is an

artifact of placing the circular array on the boundary of the aperture. The power

allocation to each mode for the UCA of smaller radii than the aperture using the

same number of antennas is shown in Fig. 6.11. It can be seen that as the UCA is

made smaller, the lower order modes become more uniform. However, the power

at the higher order modes is reduced, therefore one would expect little capacity

improvement, as can be seen in Fig. 6.12, where the capacity for the various UCA
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Figure 6.10: Average power assigned to each mode for the ULA, UCA, and UGA,
within an aperture of 0.8λ, relative to 0dB in each mode for ideal spatial-to-mode
coupling.

radii are nearly identical.

The roll off of power at the higher order modes shown for all array geometries

indicates the difficulty using constrained antenna arrays to excite the modes of

the aperture. As can be seen, the higher order modes receive very little power

and contribute little to the capacity of the system. Therefore, it is important to

note that achieving ideal spatial-to-mode coupling, where N uncorrelated modes

are excited with equal power, may not be possible using antenna arrays. Consider

a densely sampled circular aperture such that the spatial-to-mode functions are

continuous, then the n, n′-th element of matrix product J †
TJT is given by

J †
TJT|n,n′ =

nT∑
t=1

Jn(xt)Jn′(xt) (6.21a)

= in−n′
nT∑
t=1

Jn(k ‖xt‖)Jn′(k ‖xt‖)e−i(n−n′)θx (6.21b)

≈ nT

πrT
2
in−n′

∫∫

S1
Jn(kr)Jn′(kr)e−i(n−n′)θrdrdθ (6.21c)

=
nT

πrT
2
in−n′

∫ rT

0

Jn(kr)Jn′(kr)rdr

∫ 2π

0

e−i(n−n′)θdθ. (6.21d)
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Figure 6.11: Average power assigned to each mode for the UCA of radii r =
{0.8λ, 0.75λ, 0.7λ}, within an aperture of 0.8λ, relative to 0dB in each mode for
ideal spatial-to-mode coupling.
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Figure 6.12: Capacity versus angular spread at the transmitter for mode-to-mode
communication (modes), and a uniform circular array (UCA) of radii r = rT =
rR = {0.8λ, 0.75λ, 0.7λ}, within spatial regions of radius 0.8λ and isotropic receiver
scattering.
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From the last term in (6.21d), the matrix product J †
TJT is zero for all n 6= n′, thus

J †
TJT is a diagonal matrix with diagonal entries

J †
TJT|n,n =

2nT

rT
2

∫ rT

0

rJ2
n(kr) dr (6.22a)

= nTJ2
n+1(krT), (6.22b)

where (6.22b) follows from the identity
∫ 1

0
zJ2

n(αz)dz = J2
n+1(α)/2 [131, p.658].

Note that the separation of radial and angular variables in (6.21d) also occurs in

the 3D case, where the orthogonality of the spherical harmonics Y m
n (θ, φ) gives

a diagonal matrix with non-unity diagonal terms for the matrix product J †
TJT.

Therefore, the assumption of semi-unitary matrix JT (i.e. J †
TJT = αIN , α ∈ R)

indicating ideal spatial-to-mode coupling, cannot be achieved even with a large

number of antennas uniformly sampling the aperture. Note that the diagonal

structure of J †
TJT indicates the antennas generate N independent modes, however,

the total power is not uniformly distributed across the modes. Identical expressions

hold for the receiver matrix product J †
RJR.

Further insight into the relationship between antenna placement and modal cor-

relation can be shown by considering the cross correlation of the channel branches.

Denote hrt as the random complex channel gain between the t-th transmit antenna

and the r-th receive antenna within circular apertures, given by (4.53), then the

cross correlation between the communication links hrt and hr′,t′ can be expressed

as

ρtt′,rr′ , E
{
hrthr′t′

}
(6.23a)

=
∑

n,n′

∑

m,m′

∫∫

S1
G(φ, ψ) F n′

n (xt,xt′) ei(n−n′)φFm′
m (yr,yr′)e

−i(m−m′)ψdφdψ

(6.23b)

=
∑

n,n′
F n′

n (xt,xt′)
∑

m,m′
Fm′

m (yr,yr′)

∫∫

S1
G(φ, ψ) ei(n−n′)φ e−i(m−m′)ψ dφdψ

(6.23c)

=
∑

n,n′
F n′

n (xt,xt′)
∑

m,m′
Fm′

m (yr,yr′) γn−n′,m−m′ , (6.23d)

where

F n′
n (xt,xt′) , Jn(xt)Jn′(xt′), (6.24)



6.3 Communication Between Arbitrarily Shaped Apertures 139

with notation
∑

n,n′ ,
∑NT

n=−NT

∑NT

n′=−NT
, and γn−n′,m−m′ is the modal correla-

tion (6.11). Equation (6.23d) shows the separate effects of the number of possi-

ble modes, modal correlation, and antenna placement on channel branch cross-

correlation for spatially constrained antenna arrays.

Consider the transmit branch correlation between two antennas t and t′, given

by (6.23d) with r = r′,

ρtt′ =
∑

n,n′
Jn(xt)Jn′(xt′)γ

T
n−n′ , (6.25)

where γT
n−n′ is the modal correlation (6.16) between the n and n′-th mode of the

transmit aperture. Assuming uncorrelated modes at the transmitter, then γT
n−n′ =

δ(n− n′) and

ρtt′ =
∑

n

Jn(xt)Jn(xt′) (6.26a)

= J0(k ‖xt − xt′‖), (6.26b)

where (6.26b) follows from a special case of Gegenbauer’s Addition Theorem [109,

pp. 363]. From (6.26b), for a minimum nT = N antennas, perfect spatial-to-mode

coupling occurs when the antennas are placed within the aperture such that the

scaled separation, k ‖xt − xt′‖, between each and every pair of antennas is a zero

of the Bessel function of zero order. Note that (6.26b) is the spatial correlation

expression for 2D rich scattering [16], therefore, achieving ideal spatial-to-mode

coupling is equivalent to finding the set of points within the aperture which are

uncorrelated for an isotropic diffuse scattering environment.

6.3 Communication Between Arbitrarily Shaped

Apertures

In the previous sections, multiple antenna systems are shown to be a particular

choice of implementation for a more fundamental spatial signal processing under-

lying communication between two apertures in space. In this section communi-

cation in a continuous spatial channel is considered, where an arbitrarily shaped

continuous aperture transmits signals which, after propagation through a general

scattering environment, are received via a second arbitrarily shaped continuous

receive aperture.
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Consider the continuous spatial channel shown in Fig. 6.13. The source or

transmit aperture4, denoted ΩT, is excited by some means and radiates signals into

the surrounding scattering environment. After propagation through the complex

scattering media, the transmitted signals arrive at the receive aperture, denoted

ΩR. Note, both transmit and receive apertures are assumed finite and starlike [79]5.

Denote Φ(φ̂) as the source signal radiating in direction φ̂ from the surface ∂ΩT

of the transmit aperture ΩT. Let Ψ(ψ̂) denote the signal received from direction

ψ̂ on the surface ∂ΩR of the receive aperture ΩR, generated due to the transmitted

signals, given by

Ψ(ψ̂) =

∫

ΩT

g(φ̂, ψ̂) Φ(φ̂) ds(φ̂), (6.27)

where ds(φ̂) is a surface element of transmit aperture ΩT with unit normal φ̂, and

g(φ̂, ψ̂) is the effective complex random scattering gain of the scattering environ-

ment for signals leaving the transmit aperture in direction φ̂ and arriving at the

receive aperture along ψ̂.

To describe the source function Φ(φ̂) consider a complete orthonormal basis set

of functions defined on ∂ΩT, namely, {φ1(φ̂), φ2(φ̂), . . .}. Note that at this stage

it is not important to know what the set of functions, {φn(φ̂)}, are as long as they

are complete orthonormal basis sets on ∂ΩT. The orthonormality of the functions

is with respect to the natural inner product

〈f, h〉Ω ,
∫

Ω

f(ϕ̂)h(ϕ̂) ds(ϕ̂), (6.28)

where ds(ϕ̂) is a surface element of Ω ∈ [ΩT, ΩR] with norm ϕ̂, that is,

〈
φn(φ̂), φn′(φ̂)

〉
ΩT

≡
∫

ΩT

φn(φ̂)φn′(φ̂) ds(φ̂) = δ(n− n′). (6.29)

The source function Φ(φ̂) can be represented by this basis set to obtain

Φ(φ̂) =
∑

n

x̃nφn(φ̂), (6.30)

4Strictly speaking, in the following ΩT and ΩR no longer denote apertures, rather volumes,
however for simplicity we will retain the notation.

5This restriction is relaxed in Chapter 6.4 where a more generalized model is presented.
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Figure 6.13: Continuous spatial channel model for communication between two
arbitrary apertures. g(φ̂, ψ̂) is the effective complex random scattering gain of the
scattering environment for signals leaving the transmit aperture ΩT in direction
φ̂ and arriving at the receive aperture ΩR along ψ̂. All scatterers are considered
external to apertures and exist in R3 \ {ΩT, ΩR}.
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where x̃n are the Fourier coefficients given by the projection of φn on Φ;

x̃n =
〈
Φ(φ̂), φn(φ̂)

〉
ΩT

. (6.31)

Similarly, to describe the stimulated function Ψ(ψ̂) on the surface ΩR consider

a second complete orthonormal basis set of functions, denoted {ψ1(ψ̂), ψ2(ψ̂), . . .},
with orthonormality

〈
ψm(ψ̂), ψm′(ψ̂)

〉
ΩR

≡
∫

ΩR

ψm(ψ̂)ψm′(ψ̂) ds(ψ̂) = δ(m−m′). (6.32)

Using this basis set, the function Ψ(ψ̂) can be expressed as

Ψ(ψ̂) =
∑
m

z̃mψm(ψ̂), (6.33)

where z̃m are the Fourier coefficients given by the projection of ψm on Ψ;

z̃m =
〈
Ψ(ψ̂), ψm(ψ̂)

〉
ΩR

. (6.34)

The coefficients x̃n (6.31) and z̃m (6.34) correspond to the signals transmitted

and received on the n-th and m-th modes of the expansions (6.30) and (6.33),

respectively. To compute the intrinsic capacity for the continuous channel, the

relationship between the transmitted and received modes due to the scattering

environment is required. Consider the received signal from direction ψ̂ due to

transmitted signal x̃n on the n-th transmit mode,

Ψn(ψ̂) = x̃n

∫

ΩT

g(φ̂, ψ̂)φn(φ̂)ds(φ̂), (6.35)

with the total received signal given by the sum over all transmit modes,

Ψ(ψ̂) =
∑

n

Ψn(ψ̂). (6.36)

From (6.34), (6.35), and (6.36), the relationship between the received signal z̃m on

the m-th mode due to the signal x̃n transmitted on the n-th mode is given by

z̃m =
∑

n

〈
Ψn(ψ̂), ψm(ψ̂)

〉
ΩR

(6.37a)

=
∑

n

βn
m x̃n, (6.37b)
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where

βn
m ,

〈〈
g(φ̂, ψ̂), φn(φ̂)

〉
ΩT

, ψm(ψ̂)

〉

ΩR

(6.38a)

=

∫

ΩR

∫

ΩT

g(φ̂, ψ̂) φn(φ̂) ψm(ψ̂) ds(φ̂)ds(ψ̂), (6.38b)

are the complex gains of the scattering environment for transmission from mode n

of ΩT and reception by mode m of ΩR.

There are an infinite number of modes for each aperture, however, in terms of

practical systems with finite transmit power and channel gains along with noise

at the receiver there is very little energy associated with the higher order modes.

Similar to the sampling of a frequency band-limited signal, where there is a thresh-

old of sampling in the time domain at which any further sampling gives no further

increase in information, for sampled spatial apertures in the presence of finite pre-

cision or noise there will be a fundamental limit to the information content that the

spatial aperture can bear. For the circular and spherical apertures this manifested

in the number of significant coefficients in the wavefield expansions and could be

shown analytically. However, for arbitrary apertures finding the significant modes

or dominant eigenfunctions poses a much harder problem6.

Therefore, from a communications point of view, the higher order modes con-

tribute little to the capacity of the system. With this in mind, the infinite channel

representation may be truncated to a finite set of appropriately chosen transmit

modes (cardinality N), and receive modes (cardinality M) to give the finite matrix

representation

z̃ = HS x̃, (6.39)

where z̃ and x̃ are the column vectors of the N transmit mode signals {x̃n}N
n=1 , and

M receive mode signals {z̃m}M
m=1, respectively, and HS is the (M ×N) scattering

environment matrix, with m,n-th element given by (6.38b).

From (6.39) the intrinsic capacity is limited by the geometry of the apertures

(number of significant modes), and the scattering channel matrix HS (coupling

between transmit and receive modes). Larger apertures enable the excitation of a

larger number of modes, analogous to the well studied waveguide, where for a fixed

frequency the number propagation modes of significant energy is proportional to

6Note that, since every finite aperture can be enclosed within a finite sphere it is possible to
find an upper limit to the number of modes using the results from Chapter 4.
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the waveguide dimensions. The amount of information available on these modes at

the receiver is limited by correlation between the modal gains βn
m and is strongly

dependent on the scattering environment described by g(φ̂, ψ̂). Therefore, for

analysis of communication over continuous spatial channels it is necessary to study

the properties of the basis functions of the apertures and the connection between

them due to scattering.

A natural arena to study such properties is that of the Hilbert Spaces L2(ΩT)

and L2(ΩR) with associated inner products on ΩT and ΩR. Therefore in the follow-

ing, the above formulation is recast under a more general framework of compact

linear operators in Hilbert Spaces, which not only encompasses the previous chap-

ters on continuous spacially constrained channels, but provides a more general

principle that includes, for example, the time- and band-limited channel commu-

nication formulations. A complete treaty would easily fill a second Ph.D. thesis,

hence in the following few specifics are given, rather an overview of a more general

approach to communication between two arbitrary volumes is presented, with an

emphasis on highlighting the key points for future investigation.

6.4 Spatial Information and Communication

Consider two non-intersecting finite size apertures ΩT and ΩR, shown in Fig. 6.14,

with source {u ≡ u(x) ∈ L2(ΩT)}, and generated {v ≡ v(y) ∈ L2(ΩR)}, complex

separable Hilbert Spaces respectively, with the natural inner product

〈f, g〉Ω ,
∫

Ω

f(x)g(x)dΩ(x), (6.40)

and induced norm

‖f‖2
Ω ,

∫

Ω

|f(x)|2 dΩ(x), (6.41)

where dΩ(x) is a volume element of Ω at x.

Define the linear integral operator L : L2(ΩT) → L2(ΩR) by

v = Lu, (6.42)

where

v(y) =

∫

ΩT

g(x,y) u(x) dΩT(x), (6.43)



6.4 Spatial Information and Communication 145

Figure 6.14: Generalized continuous spatial channel model for communication be-
tween two arbitrary apertures. g(x, y) is the resultant function generated at y ∈ ΩR

due to the source function u(x), x ∈ ΩT. All scatterers are considered external to
apertures and exist in R3 \ {ΩT, ΩR}.
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with dΩT(x) a volume element of ΩT at x. The kernel of the operator, g(x,y),

describes the channel, giving the resultant function generated at y ∈ ΩR due to the

source function u(x), x ∈ ΩT. Note, that in the absence of scatterers the kernel is

given by [79]

g(x,y) =
e−ik‖x−y‖

4π ‖x− y‖ , (6.44)

which is the fundamental solution to the Helmholtz equation for a point source

at x. However, in the following it is assumed the environment contains scatterers

giving much more complicated expression for the channel g(x,y) than (6.44).

Consider two sets of functions {φn(x)} and {ψm(y)} orthonormal and com-

plete in Hilbert Spaces L2(ΩT) and L2(ΩR), respectively. The source and receive

functions may be expressed as

u =
∑

n

〈u, φn〉ΩT
φn, (6.45)

v =
∑
m

〈v, ψm〉ΩR
ψm. (6.46)

Denote the Fourier coefficients αn = 〈u, φn〉ΩT
and βm = 〈v, ψm〉ΩR

of the expan-

sions (6.45) and (6.46) in the transmit and receive apertures, respectively, then

following the approach in the previous section it immediately follows that,

βm =
∑

n

γn
m αn, (6.47)

where

γn
m =

∫

ΩR

∫

ΩT

g(x,y) φn(x) ψm(y) dΩT(x) dΩR(y). (6.48)

The variables γn
m can be thought of as coupling coefficients between the transmission

from mode n in ΩT and the reception by mode m in ΩR, giving the amplitude of the

function ψm in ΩR that results from source φn in ΩT. Note that (6.47) is equivalent

to (6.43) (via the representations (6.45) and (6.46)), where the basis functions are

parameterized by the coefficients {αn} and {βm}, and the channel by {γn
m}.

As discussed in the previous section, the infinite dimensional representation (6.47)

can be reduced to a finite dimensional matrix form by considering that in the pres-

ence of noise there is a limit to the information content of a spatially-constrained

aperture. That is, for given apertures, the information bearing functions u and v
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can be essentially reconstructed using a finite set of coefficients {αn} and {βm},
respectively. Therefore, the dimensionality of the apertures and communication

strengths between the apertures gives a fundamental limit to spatial communica-

tion.

6.4.1 Dimensionality of Spatial Apertures

Consider a source free finite sized aperture Ω ∈ R3, for which we wish to determine

the complete subspace of solutions f ≡ f(x),x ∈ Ω to the homogenous Helmoltz

equation

4f + k2f = 0, (6.49)

describing wavefields f in Ω due to sources in R3 \ Ω.

With respect to the inner product (6.40), the set of functions satisfying ‖f‖2
Ω <

∞ is a separable Hilbert Space, and solutions to (6.49) are a strict subspace. Since

the Hilbert Space {f ∈ L2(Ω) : 4f + k2f = 0} is separable, the functions f can be

expressed by the complete (in the Hilbert Space) orthonormal sequence {ϕp},

f =
∑

p

〈f, ϕp〉Ω ϕp. (6.50)

Under this Hilbert Space setting, finite dimensional approximations to the in-

finite dimensional wavefield f(x) in Ω give rise to a essential dimensionality of the

wavefields. The essential dimensionality refers to a well-defined threshold in di-

mension, beyond which the best finite dimensional approximation achieves a high

relative precision [132]. That is, one wishes to find the best finite dimensional

approximation to (6.50) of the form

fP =
∑
p∈P

〈f, ϕp〉Ω ϕp, (6.51)

where P is a finite index set with cardinality |P| = P < ∞, and {ϕp}p∈P is a

finite, incomplete, orthonormal basis function set within Ω. Clearly, the metric to

determine the degree of approximation should be the induced norm (6.41). Hence,

to obtain the best approximation fP to f an orthonormal set {ϕp}p∈P along with

an index set P must be determined satisfying

min
{ϕp}p∈P

‖f − fP‖2
Ω . (6.52)
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Determination of the best approximation fP (x) of a given dimension P to represent

the wavefield f(x) in an arbitrary aperture Ω is non-trivial, made more difficult

when the source field generating f is not specified.

Using an appropriately normalized orthogonal basis set for spherical apertures

developed in [133, 134], the optimization problem (6.52) is approached in [132] by

considering a larger aperture ΩS ∈ R3 encompassing the aperture of interest, i.e.,

Ω ⊂ ΩS, where the larger aperture contains no sources. Using this model, the

approximation is then closely related to a spatial concentration problem where one

wishes to determine the finite dimensional approximation to the wavefield in sphere

ΩS that best captures the energy of that wavefield in the inner sphere Ω.

It is interesting to note that using this method, with outer sphere ΩS assumed

large enough such that any source in R3 \ ΩS is farfield to the surface of the inner

sphere Ω, gives (within an appropriate normalization) identical field representations

to those developed in Chapter 4. That is, the choice of truncation and plane wave

expansion used in Chapter 4 is the optimal in the sense of (6.52).

Extension to non-spherical regions is non-trivial and requires the spectral prop-

erties of linear integral and truncation operators, and has strong parallels with the

time-frequency concentration and associated dimensionality of time- and band-

limited signals [135–137]. However, regardless of the difficulties in determining

the basis set {ϕp}p∈P , it has been shown that it is possible to define a threshold

where including more basis functions provides limited reduction in the error of the

approximation. This implies that in the presence of noise or finite precision, the

wavefield can be reconstructed using a finite number of coefficients, hence the in-

finite dimensional operator can be represented by a finite matrix representation,

which surplants the standard MIMO matrix.

Note that the most spatially concentrated wave-field for a spherical aperture is

given by the an isotropic source field, generated by uniformly distributed sources

in all directions [132]. Therefore, the solutions to the approximation problem in

the absence of source knowledge will in general be for isotropic scattering. That is,

solving (6.52) without source knowledge will give the supremum essential dimen-

sionality of the aperture. Thus the choice of P may not be optimal in the sense of

communication between two apertures in a arbitrary scattering environment, and

as such the connection between basis functions within the apertures must also be

considered.
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6.4.2 Communication Strengths Between Apertures

Consider g(x,y) ∈ L2(ΩT × ΩR) corresponding to source free physically realistic

scattering environments, then,

∫

ΩT

∫

ΩR

|g(x,y)|2 dΩR(y)dΩT(x) = GΩT,ΩR
< ∞, (6.53)

in which case L is a compact linear operator (self-adjoint Hilbert-Schmidt oper-

ator), therefore there exists infinitely many eigenvalues λj and eigenfunctions ϕj

such that Lϕj = λjϕj.

Applying Parseval’s theorem, it is straight forward to show that

∑
n,m

|γn
m|2 = GΩT,ΩR

, (6.54)

that is, since GΩT,ΩR
is finite the total strength of the coupling between apertures

is bounded, hence the strength of the interconnections |γn
m| is negligible7 for all

but a finite set of couplings. Therefore, although there are infinitely many con-

nections between apertures, the number of practical channels in the presence of

noise or finite precision is finite. In effect, weakly connected communications chan-

nels (vanishingly small |γn
m|) will lead to vanishingly small received basis functions

which become insignificant in the presence of noise.

Note that the total connection strength GΩT,ΩR
is computed by the evaluation

of the kernel g(x,y) over the apertures ΩT and ΩR, therefore, both the geometry of

the apertures and the scattering environment determine the possible limits to com-

munication between the apertures. In the special case of no scattering, from (6.44)

GΩT,ΩR
depends only on the geometry of the apertures and their relative positions.

Also observe that the value of GΩT,ΩR
is invariant to the choice of basis functions,

however, it is possible to choose these basis sets such that the number of channels

with connection strengths above the threshold imposed by noise is maximized.

The optimal set of basis functions would be the one that maximizes the connec-

tion strengths, i.e., the best choice of (normalized) transmit function φ(x) would be

the one that gives the maximum value of |γ|2 =
∫
ΩR
|ψ(y)|2 dΩR(y). Substitution

of (6.43) leads to maximization of

|γ|2 =

∫∫

ΩT

GΩR
(x,x′)φ(x)φ(x′) dΩT(x) dΩT(x′), (6.55)

7i.e., there exists some M and N such that |γn
m| ≤ ε for m > M , n > N and small ε.
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where

GΩR
(x,x′) =

∫

ΩR

g(x,y)g(x′,y) dΩR(y). (6.56)

Note that the kernel GΩR
(x, x′) is continuous finite Hermitian function in ΩT and

ΩR, therefore (6.55) is maximized when φ is an eigenfunction of GΩR
, i.e., finding

eigenfunction φ such that eigenvalue |γ|2 is maximized for

|γ|2 φ(x′) =

∫

ΩT

GΩR
(x,x′)φ(x)dΩT(x). (6.57)

Hence, the set of orthonormal basis functions with the largest successive values

of |γ| is the set {φj} where φj is the j-th normalized eigenfunction in descending

order of their eigenvalues λj = |γj|2.

For each normalized source eigenfunction φj there is a normalized receiver func-

tion ψj for which

λjψj = Lφj. (6.58)

Similar to the source functions, the ψj are the solutions of the eigenfunction problem

|γj|2 ψj(y) =

∫

ΩR

GΩT
(y, y′)ψj(y

′) dΩR(y′), (6.59)

where

GΩT
(y, y′) =

∫

ΩT

g(x,y)g(x,y′) dΩT(x). (6.60)

Therefore, for any two arbitrary apertures, there is a set of communications modes

that are pairs of eigenfunctions (φj, ψj) which correspond to the best coupled func-

tions between the two apertures with the same eigenvalue λj. The total strength of

the coupling between apertures can now be expressed in terms of the eigenvalues,

which are the coupling strengths for the optimal choice of eigenfunctions in ΩT and

ΩR,

GΩT,ΩR
=

∑
n,m

|γn
m|2 =

∑
j

λj, (6.61)

where λj are the eigenvalues of the operator L, with optimal eigenfunctions φj and

ψj. Therefore, the optimal choice of basis functions corresponds to a set of parallel
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communication channels, i.e., activation of a given source function results in the

excitation of the corresponding receiving function and to a null excitation of the

rest of the receiving functions.

By defining a dimensionality threshold similar to that in section 6.4.1 (in

fact, given the preceding arguments a sensible choice of dimensionality would be

min{N, M}, where N and M correspond to the dimensionality of the transmit

and receive apertures, respectively), the infinite dimensional operator describing

the communication between the two apertures can now be expressed by the finite

dimensional matrix equation

β = Γα, (6.62)

where Γ is a diagonal matrix with the diagonal terms given by the significant

eigenvalues of the spectrum of the bounded linear operator L, and α,β are the

vectors of transmit and receive aperture Fourier coefficients respectively.

As in section 6.4.1, analysis of communication between arbitrary apertures in

an arbitrary scattering environment reduces to the spectral properties of a linear

operator, and is in general a non-trivial problem. The communication modes be-

tween two rectangular prism volumes in free space is analyzed in [138] where the

eigenfunctions separates into prolate spheroidal wavefunctions for each dimension.

However, extension to volumes that do not give rise to separable eigenfunctions

are much more difficult and will in general require the use of numerical techniques,

since there is no general analytical solution for the corresponding eigenvalue prob-

lem. In [139] the free space analysis of [138] was extended to include scattering.

Using a numerical algorithm, the connection strengths between the two prisms for

a finite set of randomly located scatterers was investigated.

Intrinsic Capacity

A more general result of intrinsic capacity than that of (6.2b) can now be defined.

The intrinsic capacity between two arbitrary apertures ΩT and ΩR is defined as

the maximum mutual information of the vectors β and α over all possible basis

functions for the transmit aperture {φn}n∈N and receive aperture {ψm}m∈M;

C = max
{φn}n∈N
{ψm}m∈M

I(β; α | g(x,y)), (6.63)
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with transmit and receive sets of finite cardinality, e.g., |N | ≤ ∞ and |M| ≤
∞, respectively. Maximization of (6.63) occurs for basis functions chosen as the

associated eigenfunctions for the eigenvalues λj of the linear operator L , giving

the instantaneous capacity

C =
K∑

j=1

log
(
1 +

η

K
λ2

j

)
, (6.64)

where K ≤ min{N, M} denotes the number of significant eigenvalues of the op-

erator, and is closely related to the spatial richness factor defined in Chapter 4.

Observe that K represents the number of eigen-modes between the two apertures

and is defined by the size of the transmit and receive apertures along with the

properties of the scattering environment.

In the case of isotropic scattering, from Section 6.4.1, K = min{N,M} and

λ2
j ≈ 1, j = {1, . . . , K} giving the maximum capacity between the two apertures as

K log(1 + η/K), which gives an absolute limit for spatial communication of η/ ln 2

for large apertures, i.e., K →∞.

6.5 Summary and Contributions

This chapter has shown that the antenna elements are not the limiting factor in the

capacity of MIMO systems. Antenna arrays are simply one choice of implemen-

tation of a more general spatial processing underlying all wireless communication

systems. This chapter has shown that there is a fundamental limit to communica-

tion between two continuous apertures in space, and MIMO is an implementation

requiring sampling of the apertures such that the discrete system approaches the

limits of the spatial channel.

Some specific contributions made in this chapter are:

1. A mode-to-mode capacity was introduced, which gives the maximum capac-

ity between two circular or spherical apertures regardless of the numbers of

antennas or array geometry. This capacity was shown to be dependent on

the aperture size and the scattering environment.

2. It was shown that the MIMO implementation of sampling the apertures with

antenna elements is a form of mode excitation, where each mode of the trans-

mit aperture is coupled via the scattering environment to a receiver mode.
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The use of uniform linear and uniform circular arrays of antennas to excite

the modes was shown to give significantly lower capacities than that achiev-

able by the apertures (mode-to-mode capacity), due to poor mode excitation

by those arrays.

3. The results of the circular and spherical apertures was extended to continuous

arbitrary shaped apertures. A novel framework for studying the capacity

between continuous spatial apertures is developed using the general concepts

of separable Hilbert Spaces.

4. The capacity for communication between arbitrary apertures is shown to

be determined by the eigenvalues and eigenfunctions of a compact linear

operator. Using dimensionality results analogous to that for the circular and

spherical regions in Chapter 4, the linear operator can be shown to have

a finite matrix representation in the presence of noise, therefore tools from

well known spectral analysis can be applied to calculate the best choice of

excitation and receiver functions within the apertures to maximize capacity.





Chapter 7

Conclusions and Future Research

This chapter states the conclusions drawn from this thesis. The summary of con-

tributions can be found at the end of each chapter and are not repeated here.

Following this, some possible future research directions are proposed.

7.1 Conclusions

This thesis has been concerned with the information theoretic capacity of a single-

user, narrowband wireless communications link utilizing multiple-antennas at the

transmitter and receiver. Motivated by the linear growth in capacity with increas-

ing numbers of antennas shown to be possible for i.i.d. Rayleigh fading channels,

this thesis investigated the capacity for more physically realistic environments,

where both the antenna arrays and scattering are constrained.

By introducing the previously ignored spatial aspects, namely the antenna array

geometry and the scattering distribution, into the channel model new bounds and

fundamental limitations to MIMO capacity were derived for spatially constrained,

or spatially selective, channels. The most significant result was the concept that

the volumes containing the antenna arrays had an intrinsic capacity, which is an

upper limit to communication between the volumes that could not be increased

with increasing numbers of antennas within. The intrinsic capacity was shown to

be determined by the aperture shape, size and orientation, along with the richness

of the scattering environment, and is independent of the number of antennas and

their geometry.

With respect to practical systems, MIMO was shown to be an implementation

of a more fundamental communication over a continuous spatial channel, where the

discrete antennas sample the continuous apertures such that the discrete system
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approaches the limits of the spatial channel.

This thesis has shown there is a fundamental limit to the communication be-

tween two continuous volumes in space, where using antenna arrays is simply one

choice of implementation of a more general spatial signal processing underlying all

wireless communication systems.

7.2 Future Directions of Research

Although this thesis has given valuable insights into the limitations of wireless

communication systems, there are many more research directions one could follow

to further broaden the understanding and implementation of such systems. Out-

lined below is a small subset of a much larger group of possible research projects

pertinent to this thesis.

Spatial signal processing theory: As outlined in Chapter 6 communication in

continuous spatial channels requires the development of a spatial signal pro-

cessing theory, analogous to the time- and band-limited channel formulations.

Some foundations have been laid in Chapter 6 using the Hilbert Space set-

ting and linear operator theory, however, there is a significant amount of work

required to fully develop the theory.

Channel modelling and validation: Although the channel model presented in

this thesis gives theoretical insights into the factors determining capacity,

the emphasis has been on statistical based models. To fully understand and

exploit all the properties wireless channels offer, there is a need to further

extend the modelling of scattering environments along with experimental

validation to reconcile with results presented here.

Wideband and multiuser systems: This thesis has focused on single-user nar-

rowband channels, an obvious extension is to include wideband channels as

well as multiuser schemes. Some results have appeared in the literature.

However, these generally assume the i.i.d. Rayleigh fading channel and need

to be re-evaluated given the conclusions of this thesis.

Implementation: As discussed above, implementation using multiple-antennas

is one of several options to communication between spatial volumes. How-

ever, in the foreseeable future it is the most likely scheme to be incorporated

widely in wireless systems. Therefore, to achieve the capacities predicted in
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this thesis coding schemes which approach the limits imposed by the spatial

channels are required. Space-time codes have been developed for MIMO sys-

tems, however to date these have optimized capacity for the i.i.d. Rayleigh

fading channel and have therefore ignored the spatial component inherent in

realistic channels. Therefore, a true space-time coding scheme is required,

where the codes are optimized over space and time, that is, given a fixed

aperture in which to place the antenna elements, what is the optimal an-

tenna placement and coding scheme with respect to the capacity or diversity

performance.
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[112] P. Stoica and T. Söderström, “Eigenelement statistics of sample covariance

matrix in the correlated data case,” Digital Signal Processing, vol. 7, pp.

136–143, 1997.

[113] C.A. Balanis, Antenna Theory: Analysis and Design, John Wiley and Sons,

New York, 2nd edition, 1997.

[114] J.P. Kermoal, P.E. Mogensen, S.H. Jensen, J.B. Anderson, F. Frederiksen,

T.B. Sorensen, and K.I. Pedersen, “Experimental investigation of multipath

richness for multi-element transmit and receive antenna arrays,” in IEEE

Vehicular Technology Conference, Tokyo, Japan, 2000, pp. 2004–2008.



170 Bibliography

[115] W. Yu, M. Bengtsson, B. Ottersten, D.P. McNamara, P. Karlsson, and M.A.

Beach, “A wideband statisitical model for NLOS indoor wireless MIMO

channels,” in IEEE Vehicular Technology Conference (Spring), Birmingham,

Al, 2002.

[116] J.W. Wallace and M.A. Jensen, “Spatial characteristics of the MIMO wireless

channel: experimental data acquisition and analysis,” in IEEE International

Conference on Acoustics, Speech and Signal Processing, Salt Lake City, Utah,

2001, pp. 2497–2500.

[117] G. Athanasiadou, A. Nix, and J. McGeehan, “A microcellular ray-tracing

propagation model and evaluation of its narrow-band and wide-band pre-

dictions,” IEEE Journal on Selected Areas in Communications, vol. 18, pp.

322–335, 2000.

[118] G. German, Q. Spencer, A. Swindlehurst, and R. Valenzuela, “Wireless

indoor channel modeling: statistical agreement of ray tracing simulations

and channel sounding measurements,” in IEEE International Conference on

Acoustics, Speech, and Signal Processing, Salt Lake City, UT, 2001, vol. 4,

pp. 778–781.

[119] J.W. Wallace and M.A. Jensen, “Modeling the indoor MIMO wireless chan-

nel,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 2, pp.

591–599, 2002.

[120] A.M. Sayeed, “Deconstructing multi-antenna fading channels,” IEEE Trans-

actions on Signal Processing, vol. 50, no. 10, pp. 2563–2579, 2002.

[121] D. Gesbert, H. Bolcskei, D. Gore, and A. Paulraj, “Performance evaluation

for scattering MIMO channel models,” in 34th Asilomar conference on signals

systems and computers, Pacific Grove, CA, 2000.

[122] D. Chizhik, G. Foschini, M. Gans, and R. Valenzuela, “Keyholes, correla-

tions, and capacities of multielement transmit and receive antennas,” IEEE

Transaction on Wireless Communications, vol. 1, no. 2, pp. 361–368, 2002.

[123] A. Derneryd, “Analysis of the microstrip disc element,” IEEE Transactions

on Antennas and Propagation, vol. 27, no. 5, pp. 660–664, 1979.



Bibliography 171

[124] J. Huang, “Circularly polarized conical patterns from circular microstrip

antennas,” IEEE Transactions on Antennas and Propagation, vol. 27, pp.

137–145, 1984.

[125] J.Q. Howell, “Microstrip antennas,” IEEE Transactions on Antennas and

Propagation, vol. 23, pp. 90–93, 1975.

[126] Y.T. Lo, D. Solomon, and W.F. Richards, “Theory and experiment in mi-

crostrip antennas,” IEEE Transactions in Antennas and Propagation, vol.

27, pp. 137–145, 1979.

[127] R.G. Vaughan, “Two-port higher mode circular microstrip antennas,” IEEE

Transactions on Antennas and Propagation, vol. 36, no. 3, pp. 309–321, 1988.

[128] R.G. Vaughan, “Signals in mobile communications,” IEEE Transactions on

Vehicular Technology, vol. 35, pp. 133–145, 1986.

[129] F. Demmerle and W. Wiesbeck, “A biconical multibeam antenna for space-

division multiple access,” IEEE Transactions on Antennas and Propagation,

vol. 46, no. 6, pp. 782–787, 1998.

[130] T. Svantesson, “Correlation and channel capacity of MIMO systems employ-

ing multimode antennas,” IEEE Transactions on Vehicular Technology, vol.

51, no. 6, pp. 1304–1312, 2002.

[131] I.S. Gradshetyn and I.M. Ryzhik, Tables of Integrals, Series, and Products,

Academic Press, San Diego, sixth edition, 2000.

[132] R.A. Kennedy and T.D. Abhayapala, “Spatial concentration of wave-fields:

towards spatial information content in arbitary multipath scattering,” in

Australian Communications Theory Workshop, Melbourne, Australia, 2003,

pp. 38–45.

[133] R.A. Kennedy, T.D. Abhayapala, and T.S. Pollock, “Modeling multipath

scattering environments using generalized Herglotz wave functions,” in Aus-

tralian Communications Theory Workshop, Canberra, Australia, 2003, pp.

87–92.

[134] R.A. Kennedy, T.D. Abhayapala, and T.S. Pollock, “Generalized Herglotz

wave functions for modeling wireless nearfield multipath scattering environ-

ments,” in International Conference on Acoustics, Speech, and Signal Pro-

cessing, Hong Kong, 2003, vol. IV, pp. 660–663.



172 Bibliography

[135] D. Slepian and H.O. Pollack, “Prolate spheriodal wave functions, Fourier

analysis and uncertainty - I,” Bell Systems Technical Journal, vol. 40, pp.

43–63, 1961.

[136] H.J. Landua and H.O. Pollack, “Prolate spheriodal wave functions, Fourier

analysis and uncertainty - II,” Bell System Technical Journal, vol. 40, pp.

65–84, 1961.

[137] H.J. Landua and H.O. Pollack, “Prolate spheriodal wave functions, Fourier

analysis and uncertainty - III: the dimension of space of essentially time- and

band-limted signals,” Bell System Technical Journal, vol. 41, pp. 1295–1336,

1962.

[138] D. A. B. Miller, “Communicating with waves between volumes: evaluating

orthogonal spatial channels and limits on coupling strengths,” Applied Optics,

vol. 39, no. 11, pp. 1681–1699, 2000.

[139] L. Hanlen and M. Fu, “Wireless communications with spatial diversity: A

volumetric approach,” in International Communications Conference, An-

chorage, Alaska, 2003, pp. 3001–3005.


	On Limits of Multi-Antenna Wireless Communications in Spatially Selective Channels
	Declaration
	Acknowledgements
	Abstract
	Notation and Symbols
	Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation and Background
	1.2 Wireless Communication Channels
	1.2.1 Diversity

	1.3 Fundamental Limits to Wireless Communication Systems
	1.3.1 MIMO Fading Channel Model
	1.3.2 Channel Capacity
	1.3.3 Single-Input Single-Output (SISO) System
	1.3.4 Spatial Diversity Systems
	1.3.5 Multiple-Input Multiple-Output (MIMO) System

	1.4 Capacity of MIMO systems
	1.4.1 Channel Capacity
	1.4.2 Channel Unknown at Transmitter
	1.4.3 Channel Known at Transmitter
	1.4.4 Partial Channel Knowledge
	1.4.5 Achieving Capacity: Space-Time Codes

	1.5 Structure of this Thesis
	1.5.1 Questions to be Answered in this Thesis
	1.5.2 Content and Contribution of Thesis


	Chapter 2 Introducing Space into MIMO Capacity Calculations
	2.1 Convergence of Ergodic Capacity
	2.1.1 Capacity Scaling Limits

	2.2 Receiver Spatial Correlation for General Distributions of Farfield Scatterers
	2.2.1 Channel Model
	2.2.2 Correlation of the Received Complex Envelopes
	2.2.3 Two Dimensional Scattering Environment
	2.2.4 Non-isotropic Scattering Environments

	2.3 Capacity Results
	2.4 Summary and Contributions

	Chapter 3 Saturation E®ects of Spatially Constrained MIMO Channels
	3.1 Eigen-analysis of MIMO Capacity
	3.2 Uniform Circular Array
	3.2.1 Eigenvalues of Spatial Correlation Matrix R
	3.2.2 Capacity Scaling Limits

	3.3 Arbitrary Arrays in General Scattering Environments
	3.3.1 Spatial Correlation Matrix Decomposition
	3.3.2 Capacity Limits: Constrained Aperture
	3.3.3 Capacity Limits: Limited Angular Spread
	3.3.4 Fixed Received Power
	3.3.5 Constrained 3D Apertures

	3.4 Summary and Contributions

	Chapter 4 Spatial Characterization of MIMO Channels
	4.1 Modal Truncation of Plane Waves
	4.1.1 Plane Waves
	4.1.2 2D Plane Wave Propagation
	4.1.3 3D Plane Wave Propagation

	4.2 2D Channel Model
	4.2.1 Channel Matrix Modal Decomposition

	4.3 3D Channel Model
	4.3.1 Channel Matrix Modal Decomposition

	4.4 Comments on the Channel Model
	4.4.1 Spatial Degrees of Freedom (SDOF)

	4.5 Summary and Contributions

	Chapter 5 Capacity of Spatially Selective Channels
	5.1 MIMO Model and Channel Rank
	5.2 Capacity - Aperture E®ects
	5.2.1 Antenna Saturation
	5.2.2 Aperture Size

	5.3 Capacity - Scattering e®ects
	5.3.1 Discrete Channel Representation
	5.3.2 Angular Spread

	5.4 Summary and Contributions

	Chapter 6 Intrinsic Capacity of Continuous Space Channels
	6.1 Mode-to-Mode Communication
	6.1.1 Mode Excitation
	6.1.2 Properties and Statistics of Scattering Channel Matrix HS
	6.1.3 Modal Correlation in General Scattering Environments

	6.2 Sampling E®ects on Capacity
	6.3 Communication Between Arbitrarily Shaped Apertures
	6.4 Spatial Information and Communication
	6.4.1 Dimensionality of Spatial Apertures
	6.4.2 Communication Strengths Between Apertures

	6.5 Summary and Contributions

	Chapter 7 Conclusions and Future Research
	7.1 Conclusions
	7.2 Future Directions of Research

	Bibliography

