Effect of matrix material on the morphology and optical properties of InP-based InAsSb nanostructures

Date

Authors

Lei, W.
Jagadish, C.
Tan, Hark Hoe

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics (AIP)

Abstract

This paper presents a study on the effect of matrix material on the morphology and optical properties of self-assembled InP-based InAsSbnanostructures. Due to the differences in surface roughness of the growth front, In 0.53 Ga 0.47 As matrix layer induces the formation of short quantum dashes (QDashes) and elongated quantum dots, while InP and In 0.52 Al 0.48 As matrix layers promote the formation of long QDashes and quantum wires, respectively. The shape anisotropy of InAsSbnanostructures on In 0.53 Ga 0.47 As , InP, and In 0.52 Al 0.48 As layers is further investigated with polarized photoluminescence measurements. The InAsSbnanostructures show a luminescence polarization degree of 8.5%, 14.3%, and 29% for In 0.53 Ga 0.47 As , InP, and In 0.52 Al 0.48 As matrixes, which corresponds well with the shape anisotropy observed with atomic force microscope. Furthermore, InAsSb/In 0.53 Ga 0.47 As nanostructures also show the longest, thermally stable emission wavelength, which serves as a promising material system for fabricating midinfrared emitters.

Description

Citation

Source

Applied Physics Letters

Book Title

Entity type

Access Statement

License Rights

Restricted until

Downloads