Bandwidth choice for nonparametric classification
Abstract
It is shown that, for kernel-based classification with univariate
distributions and two populations, optimal bandwidth choice has a dichotomous
character. If the two densities cross at just one point, where their curvatures
have the same signs, then minimum Bayes risk is achieved using bandwidths which
are an order of magnitude larger than those which minimize pointwise estimation
error. On the other hand, if the curvature signs are different, or if there are
multiple crossing points, then bandwidths of conventional size are generally
appropriate. The range of different modes of behavior is narrower in
multivariate settings. There, the optimal size of bandwidth is generally the
same as that which is appropriate for pointwise density estimation. These
properties motivate empirical rules for bandwidth choice.
Description
Citation
Collections
Source
Annals of Statistics 2005, Vol. 33, No. 1, 284-306
Type
Book Title
Entity type
Access Statement
License Rights
Restricted until
Downloads
File
Description