Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination

Authors

Sossi, Paolo
Halverson, Galen P.
Nebel, Oliver
Eggins, Stephen M.

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

Isotope ratios of heavy elements vary on the 1/10000 level in high temperature materials, providing a fingerprint of the processes behind their origin. Ensuring that the measured isotope ratio is precise and accurate depends on employing an efficient chemical purification technique and optimised analytical protocols. Exploiting the disparate speciation of Cu, Fe and Zn in HCl and HNO3, an anion exchange chromatography procedure using AG1-×8 (200–400 mesh) and 0.4 × 7 cm Teflon columns was developed to separate them from each other and matrix elements in felsic rocks, basalts, peridotites and meteorites. It required only one pass through the resin to produce a quantitative and pure isolate, minimising preparation time, reagent consumption and total analytical blanks. A ThermoFinnigan Neptune Plus MC-ICP-MS with calibrator-sample bracketing and an external element spike was used to correct for mass bias. Nickel was the external element in Cu and Fe measurements, while Cu corrected Zn isotopes. These corrections were made assuming that the mass bias for the spike and analyte element was identical, and it is shown that this did not introduce any artificial bias. Measurement reproducibilities were ± 0.03‰, ± 0.04‰ and ± 0.06‰ (2s) for δ⁵⁷Fe, δ⁶⁵Cu and δ⁶⁶Zn, respectively.

Description

Citation

Source

Geostandards and Geoanalytical Research

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until