Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve

Date

2012

Authors

Bogatikov, Evgenii
Munoz, Carlos
Pakladok, Tatsiana
Alesutan, Ioana
Shojaiefard, Manzar
Seebohm, Guiscard
Föller, Michael
Palmada, Monica
Böhmer, Christoph
Bröer, Stefan

Journal Title

Journal ISSN

Volume Title

Publisher

Karger

Abstract

Background: The amino acid transporter B0AT1 (SLC6A19) accomplishes concentrative cellular uptake of neutral amino acids. SLC6A19 is stimulated by serum- & glucocorticoid-inducible kinase (SGK) isoforms. SGKs are related to PKB/Akt isoforms, which also stimulate several amino acid transporters. PKB/Akt modulates glucose transport in part by phosphorylating and thus activating phosphatidylinositol-3-phosphate-5-kinase (PIKfyve), which fosters carrier protein insertion into the cell membrane. The present study explored whether PKB/Akt and/or PIKfyve stimulate SLC6A19. Methods: SLC6A19 was expressed in Xenopus oocytes with or without wild-type PKB/Akt or inactive T308A/S473APKB/Akt without or with additional expression of wild-type PIKfyve or PKB/Akt-resistant S318APIKfyve. Electrogenic amino acid transport was determined by dual electrode voltage clamping. Results: In SLC6A19-expressing oocytes but not in water-injected oocytes, the addition of the neutral amino acid L-leucine (2 mM) to the bath generated a current (Ile), which was significantly increased following coexpression of PKB/Akt, but not by coexpression of T308A/S473APKB/Akt. The effect of PKB/Akt was augmented by additional coexpression of PIKfyve but not of S318APIKfyve. Coexpression of PKB/Akt enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The decline of Ile following inhibition of carrier insertion by brefeldin A (5 µM) was similar in the absence and presence of PKB/Akt indicating that PKB/Akt stimulated carrier insertion into rather than inhibiting carrier retrieval from the cell membrane. Conclusion: PKB/Akt up-regulates SLC6A19 activity, which may foster amino acid uptake into PKB/Akt-expressing epithelial and tumor cells.

Description

Keywords

amino acid uptake, PKB/Akt, B0AT1, PIKfyve

Citation

Source

Cellular Physiology and Biochemistry 30.6 (2012): 1538-1546

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until