Enhanced Systems for measuring and monitoring REDD+: opportunities to improve the accuracy of emission factor and activity data in Indonesia

Date

Authors

Solichin, Solichin

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The importance of accurate measurement of forest biomass in Indonesia has been growing ever since climate change mitigation schemes, particularly the reduction of emissions from deforestation and forest degradation scheme (known as REDD+), were constitutionally accepted by the government of Indonesia. The need for an accurate system of historical and actual forest monitoring has also become more pronounced, as such a system would afford a better understanding of the role of forests in climate change and allow for the quantification of the impact of activities implemented to reduce greenhouse gas emissions. The aim of this study was to enhance the accuracy of estimations of carbon stocks and to monitor emissions in tropical forests. The research encompassed various scales (from trees and stands to landscape-sized scales) and a wide range of aspects, from evaluation and development of allometric equations to exploration of the potential of existing forest inventory databases and evaluation of cutting-edge technology for non-destructive sampling and accurate forest biomass mapping over large areas. In this study, I explored whether accuracy—especially regarding the identification and reduction of bias—of forest aboveground biomass (AGB) estimates in Indonesia could be improved through (1) development and refinement of allometric equations for major forest types, (2) integration of existing large forest inventory datasets, (3) assessing nondestructive sampling techniques for tree AGB measurement, and (4) landscape-scale mapping of AGB and forest cover using lidar. This thesis provides essential foundations to improve the estimation of forest AGB at tree scale through development of new AGB equations for several major forest types in Indonesia. I successfully developed new allometric equations using large datasets from various forest types that enable us to estimate tree aboveground biomass for both forest type specific and generic equations. My models outperformed the existing local equations, with lower bias and higher precision of the AGB estimates. This study also highlights the potential advantages and challenges of using terrestrial lidar and the acoustic velocity tool for non-destructive sampling of tree biomass to enable more sample collection without the felling of trees. Further, I explored whether existing forest inventories and permanent sample plot datasets can be integrated into Indonesia’s existing carbon accounting system. My investigation of these existing datasets found that through quality assurance tests these datasets are essential to be integrated into national and provincial forest monitoring and carbon accounting systems. Integration of this information would eventually improve the accuracy of the estimates of forest carbon stocks, biomass growth, mortality and emission factors from deforestation and forest degradation. At landscape scale, this study demonstrates the capability of airborne lidar for forest monitoring and forest cover classification in tropical peat swamp ecosystems. The mapping application using airborne lidar showed a more accurate and precise classification of land and forest cover when compared with mapping using optical and active sensors. To reduce the cost of lidar acquisition, this study assessed the optimum lidar return density for forest monitoring. I found that the density of lidar return could be reduced to at least 1 return per 4 m2. Overall, this study provides essential scientific background to improve the accuracy of forest AGB estimates. Therefore, the described results and techniques should be integrated into the existing monitoring systems to assess emission reduction targets and the impact of REDD+ implementation.

Description

Citation

Source

Book Title

Entity type

Access Statement

License Rights

Restricted until

Downloads