Geometry & Cluster Algebras: Finite Type Classification & Double Bruhat Cells

dc.contributor.authorWang, Victor Zhenyi
dc.date.accessioned2019-10-10T04:03:42Z
dc.date.available2019-10-10T04:03:42Z
dc.date.issued2016
dc.date.updated2019-10-10T03:15:18Z
dc.description.abstractIn 2000, Fomin and Zelevinsky introduced a new language called cluster algebras for describing rings with certain combinatorial structures. Cluster algebras enjoy a variety of nice properties such as well-established collection of classification results and interesting geometric properties with the upper cluster algebra. We approach cluster algebras rst from the perspective of operations on quivers, then reacquaint ourselves with a more general definition. We then present the classification of cluster algebras of nite type and explore cluster algebra structures on the ring of regular functions of double Bruhat cells.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1885/173669
dc.provenanceDeposited by Mathematical Sciences Institute in 2019.
dc.titleGeometry & Cluster Algebras: Finite Type Classification & Double Bruhat Cells
dc.typeThesis (Honours)
local.contributor.affiliationMathematical Sciences Institute, Australian National University
local.contributor.supervisorLicata, Tony
local.identifier.doi10.25911/5d9efbd877646
local.mintdoimint
local.type.degreeHonours

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Victor_Zhenyi_Wang.pdf
Size:
553.26 KB
Format:
Adobe Portable Document Format