High Performance Reference Counting and Conservative Garbage Collection

Date

2015

Authors

Shahriyar, Rifat

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Garbage collection is an integral part of modern programming languages. It automatically reclaims memory occupied by objects that are no longer in use. Garbage collection began in 1960 with two algorithmic branches — tracing and reference counting. Tracing identifies live objects by performing a transitive closure over the object graph starting with the stacks, registers, and global variables as roots. Objects not reached by the trace are implicitly dead, so the collector reclaims them. In contrast, reference counting explicitly identifies dead objects by counting the number of incoming references to each object. When an object’s count goes to zero, it is unreachable and the collector may reclaim it. Garbage collectors require knowledge of every reference to each object, whether the reference is from another object or from within the runtime. The runtime provides this knowledge either by continuously keeping track of every change to each reference or by periodically enumerating all references. The collector implementation faces two broad choices — exact and conservative. In exact garbage collection, the compiler and runtime system precisely identify all references held within the runtime including those held within stacks, registers, and objects. To exactly identify references, the runtime must introspect these references during execution, which requires support from the compiler and significant engineering effort. On the contrary, conservative garbage collection does not require introspection of these references, but instead treats each value ambiguously as a potential reference. Highly engineered, high performance systems conventionally use tracing and exact garbage collection. However, other well-established but less performant systems use either reference counting or conservative garbage collection. Reference counting has some advantages over tracing such as: a) it is easier implement, b) it reclaims memory immediately, and c) it has a local scope of operation. Conservative garbage collection is easier to implement compared to exact garbage collection because it does not require compiler cooperation. Because of these advantages, both reference counting and conservative garbage collection are widely used in practice. Because both suffer significant performance overheads, they are generally not used in performance critical settings. This dissertation carefully examines reference counting and conservative garbage collection to understand their behavior and improve their performance. My thesis is that reference counting and conservative garbage collection can perform as well or better than the best performing garbage collectors. The key contributions of my thesis are: 1) An in-depth analysis of the key design choices for reference counting. 2) Novel optimizations guided by that analysis that significantly improve reference counting performance and make it competitive with a well tuned tracing garbage collector. 3) A new collector, RCImmix, that replaces the traditional free-list heap organization of reference counting with a line and block heap structure, which improves locality, and adds copying to mitigate fragmentation. The result is a collector that outperforms a highly tuned production generational collector. 4) A conservative garbage collector based on RCImmix that matches the performance of a highly tuned production generational collector. Reference counting and conservative garbage collection have lived under the shadow of tracing and exact garbage collection for a long time. My thesis focuses on bringing these somewhat neglected branches of garbage collection back to life in a high performance setting and leads to two very surprising results: 1) a new garbage collector based on reference counting that outperforms a highly tuned production generational tracing collector, and 2) a variant that delivers high performance conservative garbage collection.

Description

Keywords

Garbe Collection, Reference Counting, Conservative Garbage Collection, RC Immix

Citation

Source

Type

Thesis (PhD)

Book Title

Entity type

Access Statement

License Rights

Restricted until

Downloads