Skip navigation
Skip navigation

Autoregressive models of singular spectral matrices

Anderson, Brian; Deistler, Manfred; Chen, Weitian; Filler, Alexander

Description

This paper deals with autoregressive (AR) models of singular spectra, whose corresponding transfer function matrices can be expressed in a stable AR matrix fraction description D- 1(q)B with B a tall constant matrix of full column rank and with the determinantal zeros of D(q) all stable, i.e. in |q|>1,q∈C. To obtain a parsimonious AR model, a canonical form is derived and a number of advantageous properties are demonstrated. First, the maximum lag of the canonical AR model is shown to be...[Show more]

dc.contributor.authorAnderson, Brian
dc.contributor.authorDeistler, Manfred
dc.contributor.authorChen, Weitian
dc.contributor.authorFiller, Alexander
dc.date.accessioned2015-12-10T23:24:46Z
dc.identifier.issn0005-1098
dc.identifier.urihttp://hdl.handle.net/1885/67342
dc.description.abstractThis paper deals with autoregressive (AR) models of singular spectra, whose corresponding transfer function matrices can be expressed in a stable AR matrix fraction description D- 1(q)B with B a tall constant matrix of full column rank and with the determinantal zeros of D(q) all stable, i.e. in |q|>1,q∈C. To obtain a parsimonious AR model, a canonical form is derived and a number of advantageous properties are demonstrated. First, the maximum lag of the canonical AR model is shown to be minimal in the equivalence class of AR models of the same transfer function matrix. Second, the canonical form model is shown to display a nesting property under natural conditions. Finally, an upper bound is provided for the total number of real parameters in the obtained canonical AR model, which demonstrates that the total number of real parameters grows linearly with the number of rows in W(q).
dc.publisherPergamon-Elsevier Ltd
dc.sourceAutomatica
dc.subjectKeywords: AR models; Ar-matrix; Auto regressive models; Canonical form; Column ranks; Constant matrix; Matrix fraction description; Natural conditions; Spectral matrices; Transfer function matrix; Upper Bound; Equivalence classes; Matrix algebra; Computer simulatio Autoregressive (AR) model; Canonical form; Matrix fraction description
dc.titleAutoregressive models of singular spectral matrices
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume48
dc.date.issued2012
local.identifier.absfor090602 - Control Systems, Robotics and Automation
local.identifier.ariespublicationf5625xPUB1440
local.type.statusPublished Version
local.contributor.affiliationAnderson, Brian, College of Engineering and Computer Science, ANU
local.contributor.affiliationDeistler, Manfred, Vienna University of Technology
local.contributor.affiliationChen, Weitian, College of Engineering and Computer Science, ANU
local.contributor.affiliationFiller, Alexander, Vienna Institute of Technolgy
local.description.embargo2037-12-31
local.bibliographicCitation.issue11
local.bibliographicCitation.startpage2843
local.bibliographicCitation.lastpage2849
local.identifier.doi10.1016/j.automatica.2012.05.047
local.identifier.absseo970109 - Expanding Knowledge in Engineering
dc.date.updated2016-02-24T08:46:54Z
local.identifier.scopusID2-s2.0-84867399980
local.identifier.thomsonID000310717100012
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Anderson_Autoregressive_models_of_2012.pdf406.5 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator