Skip navigation
Skip navigation

Boosting through optimization of margin distributions

Shen, Chunhua; Li, Hanxi


Boosting has been of great interest recently in the machine learning community because of the impressive performance for classifi- cation and regression problems. The success of boosting algorithms may be interpreted in terms of the margin theory. Recently, it has been shown that generalization error of classifiers can be obtained by explicitly taking the margin distribution of the training data into account. Most of the current boosting algorithms in practice usually optimize a convex loss...[Show more]

CollectionsANU Research Publications
Date published: 2010
Type: Journal article
Source: IEEE Transactions on Neural Networks
DOI: 10.1109/TNN.2010.2040484


File Description SizeFormat Image
01_Shen_Boosting_through_optimization_2010.pdf531.07 kBAdobe PDF    Request a copy

Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator