Skip navigation
Skip navigation

The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting

Mallmann, Guilherme; O'Neill, Hugh

Description

Interpretation of Re-Os isotopic systematics applied to mantle and mantle-derived rocks is currently hindered by the poorly understood behaviour of Re and Os during partial melting. Of particular interest is the incompatibility of Re and how it partitions between melt and the different mantle phases. Here, we study the partitioning behaviour of Re between the common upper mantle minerals (garnet, spinel, clinopyroxene, orthopyroxene, and olivine) and silicate melt under temperature (1275-1450...[Show more]

dc.contributor.authorMallmann, Guilherme
dc.contributor.authorO'Neill, Hugh
dc.date.accessioned2015-12-08T22:29:33Z
dc.identifier.issn1872-9533
dc.identifier.urihttp://hdl.handle.net/1885/34142
dc.description.abstractInterpretation of Re-Os isotopic systematics applied to mantle and mantle-derived rocks is currently hindered by the poorly understood behaviour of Re and Os during partial melting. Of particular interest is the incompatibility of Re and how it partitions between melt and the different mantle phases. Here, we study the partitioning behaviour of Re between the common upper mantle minerals (garnet, spinel, clinopyroxene, orthopyroxene, and olivine) and silicate melt under temperature (1275-1450 °C) and pressure (1.5-3.2 GPa) conditions relevant for basaltic magma genesis, over a range of oxygen fugacity (f{hook}O2) large enough (QFM+5.6 to QFM-2.9) to demonstrate the effects of changing the oxidation state of Re from 4+ to 6+. Rhenium crystal/silicate-melt partition coefficients vary by 4-5 orders of magnitude, from moderately compatible to highly incompatible, for pyroxenes, garnet, and spinel as the oxidation state of Re changes from 4+ to 6+, but Re in either oxidation state is incompatible in olivine. Because the changeover from the one Re oxidation state to the other occurs over the range of f{hook}O2s pertinent to partial melting in the Earth's mantle, bulk Re crystal/silicate-melt partition coefficients during mantle melting are also expected to vary significantly according to the oxidation state of the system. For instance, assuming QFM-0.7 and QFM+1.6 as average f{hook}O2 for mid-ocean ridge (MORBs) and island arc (IABs) basalts, respectively, a difference of at least one order of magnitude for bulk Re partition coefficients is expected (excluding any influence from a sulphide phase). Hence, Re is probably much more incompatible during the genesis of IABs compared to MORBs. Our results also demonstrate that Re4+ has a partitioning behaviour similar to Ti4+ rather than Yb, and is accordingly not a sensitive indicator of garnet in the source. The lower concentrations of Re observed in ocean island basalts (OIBs) compared to MORBs are therefore not a result of being generated deeper in the mantle where garnet is stable, leaving the hypothesis of late-stage loss of Re from OIB lavas by degassing as the most plausible explanation.
dc.publisherPergamon-Elsevier Ltd
dc.sourceGeochimica et Cosmochimica Acta
dc.subjectKeywords: clinopyroxene; garnet; island arc; mantle chemistry; mid-ocean ridge; olivine; orthopyroxene; oxidation; oxygen; partial melting; partition coefficient; partitioning; pyroxene; rhenium; silicate melt; spinel; upper mantle
dc.titleThe effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume71
dc.date.issued2007
local.identifier.absfor040304 - Igneous and Metamorphic Petrology
local.identifier.ariespublicationu9503261xPUB109
local.type.statusPublished Version
local.contributor.affiliationMallmann, Guilherme, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationO'Neill, Hugh, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.startpage2837
local.bibliographicCitation.lastpage2857
local.identifier.doi10.1016/j.gca.2007.03.028
dc.date.updated2015-12-08T09:22:49Z
local.identifier.scopusID2-s2.0-34248649903
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Mallmann_The_effect_of_oxygen_fugacity_2007.pdf581.36 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator