Optimising Flexibility of Temporal Problems with Uncertainty
Date
2017
Authors
Cui, Jing
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Temporal networks have been applied in many autonomous systems.
In real situations, we cannot ignore the uncertain factors when
using those autonomous systems. Achieving robust schedules and
temporal plans by optimising flexibility to tackle the
uncertainty is the motivation of the thesis.
This thesis focuses on the optimisation problems of temporal
networks with uncertainty and controllable options in the field
of Artificial Intelligence Planning and Scheduling. The goal of
this thesis is to construct flexibility and robustness metrics
for temporal networks under the constraints of different levels
of controllability. Furthermore, optimising flexibility for
temporal plans and schedules to achieve robust solutions with
flexible executions.
When solving temporal problems with uncertainty, postponing
decisions according to the observations of uncertain events
enables flexible strategies as the solutions instead of fixed
schedules or plans. Among the three levels of controllability of
the Simple Temporal Problem with Uncertainty (STPU), a problem is
dynamically controllable if there is a successful dynamic
strategy such that every decision in it is made according to the
observations of past events.
In the thesis, we make the following contributions. (1) We
introduce an optimisation model for STPU based on the existing
dynamic controllability checking algorithms. Some flexibility and
robustness measures are introduced based on the model. (2) We
extend the definition and verification algorithm of dynamic
controllability to temporal problems with controllable discrete
variables and uncertainty, which is called Controllable
Conditional Temporal Problems with Uncertainty (CCTPU). An
entirely dynamically controllable strategy of CCTPU consists of
both temporal scheduling and variable assignments being
dynamically decided, which maximize the flexibility of the
execution. (3) We introduce optimisation models of CCTPU under
fully dynamic controllability. The optimisation models aim to
answer the questions how flexible, robust or controllable a
schedule or temporal plan is. The experiments show that making
decisions dynamically can achieve better objective values than
doing statically.
The thesis also contributes to the field of AI planning and
scheduling by introducing robustness metrics of temporal
networks, proposing an envelope-based algorithm that can check
dynamic controllability of temporal networks with uncertainty and
controllable discrete decisions, evaluating improvements from
making decisions strongly controllable to temporally dynamically
controllable and fully dynamically controllable and comparing the
runtime of different implementations to present the scalability
of dynamically controllable strategies.
Description
Keywords
Artificial Intelligence, Planning and Scheduling, Temporal Problems, Optimisation, Optimization, Dynamic Controllability, Controllable Conditional Temporal Problem with Uncertainty, Discrete Variable, Dynamic Strategy, Temporal Uncertainty, Robustness Metric
Citation
Collections
Source
Type
Thesis (PhD)
Book Title
Entity type
Access Statement
License Rights
Restricted until
Downloads
File
Description