Transitions, Losses, and Re-parameterizations: Elements of Prediction Games

Date

2017

Authors

Parameswaran, Kamalaruban

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis presents some geometric insights into three different types of two-player prediction games – namely general learning task, prediction with expert advice, and online convex optimization. These games differ in the nature of the opponent (stochastic, adversarial, or intermediate), the order of the players' move, and the utility function. The insights shed some light on the understanding of the intrinsic barriers of the prediction problems and the design of computationally efficient learning algorithms with strong theoretical guarantees (such as generalizability, statistical consistency, and constant regret etc.). The main contributions of the thesis are: • Leveraging concepts from statistical decision theory, we develop a necessary toolkit for formalizing the prediction games mentioned above and quantifying the objective of them. • We investigate the cost-sensitive classification problem which is an instantiation of the general learning task, and demonstrate the hardness of this problem by producing the lower bounds on the minimax risk of it. Then we analyse the impact of imposing constraints (such as corruption level, and privacy requirements etc.) on the general learning task. This naturally leads us to further investigation of strong data processing inequalities which is a fundamental concept in information theory. Furthermore, by extending the hypothesis testing interpretation of standard privacy definitions, we propose an asymmetric (prioritized) privacy definition. • We study efficient merging schemes for prediction with expert advice problem and the geometric properties (mixability and exp-concavity) of the loss functions that guarantee constant regret bounds. As a result of our study, we construct two types of link functions (one using calculus approach and another using geometric approach) that can re-parameterize any binary mixable loss into an exp-concave loss. • We focus on some recent algorithms for online convex optimization, which exploit the easy nature of the data (such as sparsity, predictable sequences, and curved losses) in order to achieve better regret bound while ensuring the protection against the worst case scenario. We unify some of these existing techniques to obtain new update rules for the cases when these easy instances occur together, and analyse the regret bounds of them.

Description

Keywords

Statistical Decision Theory, Information Theory, Cost-Sensitive Classification, Strong Data Processing Inequalities, Prediction with Expert Advice, Online Convex Optimization

Citation

Source

Type

Thesis (PhD)

Book Title

Entity type

Access Statement

License Rights

Restricted until