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Dynamics of matter-wave solitons in harmonic traps with flashing optical lattices
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We study, analytically and numerically, the dynamics of a matter-wave soliton formed by a Bose-Einstein
condensate with an attractive interatomic interaction confined in a one-dimensional harmonic trap and subjected
to a flashing weak periodic potential. Within the framework of the Gross-Pitaevski equation, we show that
efficient energy transfer to the soliton occurs within two distinct frequency regimes: (a) on resonance with the
trapping frequency and (b) on resonance with the internal mode of the soliton. We find that the former regime is
well described within the soliton-as-particle approximation, while the latter relies on the extended nature of the
localized state and involves strong excitations of the width coupled to translational motion.
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I. INTRODUCTION

Since their first observation [1] matter-wave bright solitons
have attracted an increasing amount of interest due to their
unique possibilities in both applied and fundamental problems.
At the heart of many of the investigations is the challenge of
matter-wave packet control and manipulation. Controlled mo-
tion is central to proposed soliton-based metrology schemes,
such as in the splitting and recombination of solitonic wave
packets for matter-wave interferometry [2,3] or through the
sampling of a local environment through quantum reflection
[4]. Controlled motion is also of fundamental interest in
the development of transport schemes for manipulation of
Bose-Einstein condensates [5–9] and ultracold atoms [10],
and more generally, for understanding the interplay of wave
dynamics and external driving potentials [11–13]. However,
very little is known about the behavior of solitons driven inside
confining potentials, despite the fact that such systems are a
natural starting point for soliton-based matter-wave metrology.
In this work we determine the mechanisms of energy transfer in
the simplest case of a harmonic trap, with a driving achieved
through a weak flashing optical lattice, and we uncover the
dependence of the soliton motion on the frequency of driving
and the soliton mass.

The driving of solitons by a flashing optical lattice has been
studied recently in the context of the ratchet effect [5,6,8]
where it was found that a one-dimensional asymmetric optical
lattice can lead to directed soliton motion, however we note
that regular energy exchange between the lattice and soliton
leading to chaotic soliton motion was not studied in these
earlier works. By contrast in this work we find that in the
strong energy-exchange regime, chaotic motion becomes the
norm, even in the absence of asymmetry.

In confined waves without an optical lattice a time-
modulated confining potential has been shown to lead to
Faraday resonances in a Bose-Einstein condensate (BEC) [14],
yet the presence of a static optical lattice has been shown
to suppress the Faraday wave development [15]. However
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the case we consider here, a static confining potential and
a time-varying optical lattice, has received little attention. We
use it to understand the basic mechanism of energy exchange
between the lattice and a soliton and we reveal two possible
pathways to soliton motion. The most robust mechanism is
an effective parametric driving achieved through the coupling
of the lattice to the soliton collective mode in the trap. The
second mechanism for energy exchange is that of a coupling
between the lattice and a soliton internal mode. We find in
the absence of dissipation this ultimately leads to the break-up
of the soliton, unlike in the case of sine-Gordon kink solitons
where this mechanism can play a dominant role in soliton
transport [16].

Our investigations are based on the mean-field Gross-
Pitaevskii equation (GPE) and a variational approach. The
latter has been successfully used to describe BEC dynamics
in the absence of a time-varying potential [17]. We find that
this variational method also works well in the time-dependent
case, accurately predicting the qualitative behavior of the
condensate. In the chaotic regime however, as expected,
precise quantitative predictions of the soliton motion break-
down, although we find that the general predictions from the
variational method are still valid.

Our analysis is presented as follows. In Sec. II we begin
by developing the one-dimensional GPE from the full three-
dimensional system, discussing the limitations inherent in this
approximation, and introducing the characteristic parameter
values we will use throughout this work. In Sec. III we derive
the variational model for our time-dependent system, obtaining
a system of two coupled ordinary differential equations which
accurately model the dynamics. In Sec. IV we examine the
dynamics in the presence of a harmonic trapping potential,
uncovering the two regimes of energy exchange with the
soliton. In Sec. V we present an experimental scenario in
which to observe our results, and in Sec. VI we present our
conclusions.

II. MODEL

We begin with the full three-dimensional Gross-
Pitaevskii equation, modeling the mean-field dynamics of the
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Bose-Einstein condensate:

ih̄
∂�

∂t
=

[
− h̄2

2m
∇2 + V (r,t) + 4πh̄2asNtot

m
|�|2

]
�, (1)

where �(r,t) is the macroscopic wave function, normalized
such that

∫ |�(r,t)|2dr = 1, Ntot is the number of atoms, m is
the atomic mass, and as is the s-wave scattering length.

Here we consider the case of a BEC with an attractive
interatomic interaction (as < 0), trapped in the x direction by
a harmonic potential V (x), strongly confined in the transverse
y and z directions by a two-dimensional harmonic trap, and
subject to a flashing lattice potential U (x,t) along the x

dimension:

V (r,t) = V (x) + U (x,t) + 1
2mω2

⊥(y2 + z2), (2)

where V (x) = 1
2mω2

‖x
2 is the longitudinal harmonic trap and

ω⊥ and ω‖ are the transverse and longitudinal harmonic
trap frequencies, respectively, U (x,t) = UlEr cos(ωlt +
ζ ) cos(klx + δ) is an optical lattice with wave number kl , depth
2Ul [in units of recoil energy Er = h̄2/π2/(2md2) where d is
the lattice spacing] and an intensity varying with frequency
ωl . The parameters ζ and δ are the temporal and spatial phase
offsets, respectively.

We follow the standard procedure to reduce this model
to one dimension [18]. We assume the wave function to be
separable, of the form �(x,y,z,t) = ψ(x,t)φ(y,z,t), where
φ(y,z,t) is the ground state of the two-dimensional harmonic
oscillator:

φ(y,z,t) = 1

a⊥
√

π
e−(y2+z2)/2a2

⊥e−iω⊥t , (3)

with a⊥ =
√

h̄
mω⊥

. Substituting the factorized wave function

into the full GPE (1), multiplying by φ∗ and integrating over the
y and z dimensions, we derive the effective one-dimensional
(1D) GPE:

ih̄
∂ψ

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x) + U (x,t) + g1D|ψ |2

]
ψ, (4)

where g1D = 2h̄asω⊥Ntot. This equation is valid in the weakly
interacting case (i.e., when asNtot|ψ |2 � 1 [19]).

The model is made dimensionless by the introduction of
new dimensionless variables t̃ = ωxt , where ωx is a charac-
teristic frequency in the x dimension, x̃ = x/ax , where ax =√

h̄/mωx , and ψ̃ =
√

2|as |ω⊥Ntot

ωx
ψ . Upon these substitutions,

we arrive at the dimensionless 1D GPE:

i
∂ψ̃

∂t̃
=

[
−1

2

∂2

∂x̃2
+ Ṽ (x̃) + Ũ (x̃,t̃) + γ |ψ̃ |2

]
ψ̃, (5)

where γ = sign(as). For brevity of notation we omit the
tildes in the rest of the work. The normalized potentials
take the form V (x) = 1

2α2x2 for the harmonic potential, and
U (x,t) = ρ(t) cos(kx + δ) for the driving potential, where
ρ(t) = η cos(ω0t + ζ ) (see Fig. 1). The normalized parameters
in terms of the original physical parameters are given by α =
ω‖/ωx , η = Ul/(h̄ωx), k = axkl , ω0 = ωl/ωx . Throughout this
work we set the phase offsets δ and ζ to be zero. We have found
no evidence of any significant change due to variations in these
phase offsets. We expect this is a consequence of the invariant
time-average properties of our potential under change in these

FIG. 1. (Color online) Numerical initial conditions for the soliton
(dark solid line, blue) found from the variational solution within a
harmonic trap (dashed line) with a flashing optical lattice (light solid
line, red). (a) N = 3 soliton, lattice at t = 0; (b) N = 5 soliton, lattice
at t = π/ω0.

offsets, in contrast to other work where the phase offsets can
lead to changes in the time average, and therefore changes in
the observed behavior in the system [5,6,20].

We are interested in the frequency domain which encom-
passes the resonant frequencies of the trapping potential and
internal mode of the soliton, and length scales comparable
to the width of the soliton. The strength of the harmonic
potential is essentially a ratio of the trap frequency and
the characteristic frequency in the x dimension, ωx . We
assume that the harmonic trap is much more extended than
the characteristic spatial scale of the soliton, ax , so that the
frequency of the harmonic trap is well separated from the
frequencies of the soliton internal modes. In our calculations
we take α = 0.1. The total atom number Ntot is now related
to the one-dimensional soliton mass N = ∫ ∞

−∞ |ψ |2dx by the
relationship Ntot = Nωxax/(2|as |ω⊥). Note that the strength
of the nonlinearity is captured by N , increasing |as | will
increase N with Ntot fixed.

For the driving potential, we restrict our attention only to
the effects of the lattice wave number k and frequency of
oscillation ω0, and fix the amplitude of the driving potential at
η = 0.05.

III. VARIATIONAL ANALYSIS

The variational approach [17,21,22] allows us to reduce
the complexity of the full nonlinear wave system (5) to
a problem involving ordinary differential equations for the
variables of interest (such as the center-of-mass position).
We follow a similar procedure to that used in Ref. [17] to
find a set of equations describing the dynamics of the width,
position, amplitude, and phase of a soliton in the presence of a
potential. In the limit of constant width (which typically occurs
when the system is driven far from the soliton internal mode
frequencies), the system reduces to the single equation for the
soliton position.

Our derivation begins with the Lagrangian density of the
GPE (5):

L = i

2

(
ψ

∂ψ†

∂t
− ψ† ∂ψ

∂t

)
+

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+ [V (x) + U (x,t)]|ψ |2 + γ

2
|ψ |4. (6)
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Our variational ansatz is the following sech function descrip-
tion of the soliton:

ψans =A(t)sech

(
x − x0(t)

w(t)

)
ei[v(t)(x−x0(t))+β(t)(x−x0(t))2], (7)

where x0,w,v,β, and A are, respectively, the position, width,
velocity, chirp, and amplitude of the wave function. See Figs.
1(a) and 1(b) for examples of solitons of mass N = 3 and
N = 5, respectively. Substituting this ansatz into (6) we obtain
the effective Lagrangian:

Leff =
∫ ∞

−∞
L[ψans] dx

= i(AȦ∗ − A∗Ȧ)w + 2γ

3
|A|4w

+ |A|2
{
−2vwẋ0 + π2

6
w3β̇ + 1

3w
+ v2w

+ π2

3
β2w3 − α1w

(
2x2

0 + π2

6
w2

)

+α2w

(
2x4

0 + π2x2
0w2 + 7π4

120
w4

)

+ kπw2η cos(ω0t) cos(kx0)csch

(
kπw

2

) }
. (8)

The Euler-Lagrange equations are given by

d

dt

∂Leff

∂q̇j

= ∂Leff

∂qj

, (9)

where qj are the parameters x0,w,v,β,A, and A∗. The
Euler-Lagrange equation for qj = v gives v = ẋ0 as expected.
Subtracting the equations for A and A∗ gives us d

dt
(w|A|2) = 0,

which after recognizing that for our soliton ansatz N = 2w|A|2
simply means that mass is conserved in our system, also as ex-
pected. Using this result for the equation for β, we obtain ẇ =
2βw. After some lengthy, but straightforward, algebra and us-
ing all of the equations for A,A∗, x0,β, and v, we obtain the fol-
lowing two equations for the position and width of the soliton:

ẍ0 = −α2x0 + 1

2
k2πwη cos(ω0t) sin(kx0)csch

(
kπw

2

)
,

(10)

ẅ = 4

π2w3
+ 2γN

π2w2
− α2w + 3k2wη cos(ω0t) cos(kx0)

× csch

(
kπw

2

) [
coth

(
kπw

2

)
− 2

kπw

]
. (11)

It is worth noting that in the absence of the flashing potential
there is no coupling between the soliton position and its
width, and the motion is perfectly periodic. The presence of
the flashing optical lattice leads to the possibility of chaotic
behavior, through the introduction of nonlinearity in the soliton
potential, and coupling between the collective coordinates.

IV. NUMERICAL RESULTS

For comparison between the two methods [variational
and numerical solution of Eq. (5)] we use the same initial
conditions in each case: a slightly perturbed solution to the

FIG. 2. (Color online) Comparison between GP (color shading
of density) and variational (dotted lines) results for the four different
regimes of behavior: (a) low driving frequency relative to soliton
speed, ω0 = 0.05; (b) ω0 = 0.5, chaotic driving in the effective-
particle regime; (c) ω0 = 1, no energy transfer observed; (d) ω0 = 4,
excitation of the soliton width oscillation leading to center-of-
mass motion. Initial conditions: x0(0) = 0.001, w(0) = 0.399; other
parameter values: N = 5, k = 4, η = 0.05, α = 0.1.

variational equations of motion (10) and (11) with η = 0
(equivalent to a small perturbation of less than 1% to the
soliton from the exact soliton ground state). For the N = 5
soliton (used for the majority of the analysis) we take w =
0.399 (which gives |A|2 = N/2w ≈ 6.26) and x0 = 0.001
(unless otherwise noted). These initial conditions are shown
in Fig. 1(a).

Numerical integration of Eq. (5) reveals four regimes
of behavior for different parameter values, as identified in
Fig. 2. At low driving frequencies the soliton motion is
more rapid than the changing potential, and this leads to the
soliton shuffling between the transient minima produced by
the driving potential, with complex dynamics emerging due
to the interplay between the soliton motion and the relatively
slow changing potential [see Fig. 2(a)]. At a driving frequency
near the trap frequency, the center-of-mass (COM) motion of
the soliton is excited and we see significant spatial oscillations
of the soliton [Fig. 2(b)]. The soliton itself remains almost
unchanged, and as such we refer to this as the “effective-
particle” regime. Increasing the driving frequency further we
see an abrupt cessation of soliton motion [Fig. 2(c)]. Finally, at
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FIG. 3. (Color online) Maximum energy transfer to soliton
center-of-mass (ECOM) as k and ω0 are varied, as predicted by
variational equations of motion for initial conditions x0(0) = 0.001,
w(0) = 0.399. Colors give maximum ECOM according to the color bar
on the right. Existence of two distinct driving regimes can be seen,
low-frequency effective-particle regime and higher frequency width
oscillation regime. Parameter values are as follows: α = 0.1, N =
5, η = 0.05. Dotted line corresponds to the predicted driving cutoff
(see text). Dashed line corresponds to the cut at k = 4 shown in Fig. 4.

still higher frequencies, on resonance with the internal mode of
the soliton, width oscillations of the soliton are excited, which
eventually couple to the center-of-mass motion [Fig. 2(d)].
As such we refer to this as the “width-oscillation” regime.
The dashed white lines in Fig. 2 correspond to the solution of
the variational equations of motion [Eqs. (10) and (11)]. We
see that the variational approach appears to break down in the
width oscillation regime [Fig. 2(d)], predicting significantly
larger COM motion than observed in the GPE results. This
discrepancy is due to a breakdown in the assumption that the
soliton maintains its form. In fact, large shape deformations
occur due to coupling to the internal modes, and thus energy is
converted into deformation of the soliton rather than into COM
motion. For the other cases, due to the chaotic motion of the
soliton, exact agreement between the variational and numerical
solutions is impossible, however the qualitative predictions of
the maximum extent of the soliton motion agree well.

Given the qualitative agreement of the variational approach
we now use it to understand how varying the two key driving
potential parameters, the driving potential wave number k and
the driving frequency ω0, affects the transfer of energy to the
soliton COM motion:

ECOM = 1

2
ẋ2

0 + 1

2
α2x2

0

+ 1

2
kπwη cos(ω0t) cos(kx0)csch

(
kπw

2

)
. (12)

To this end we solve the variational equations of motion (10)
and (11) for k ∈ [0,10] and ω0 ∈ [0,5] and record the
maximum ECOM along a single trajectory from t = 0 to
t = 3000 with initial conditions x0(0) = 0.001 and x ′

0(0) = 0.
The results, shown in Fig. 3, confirm the earlier findings of
Fig. 2 that there are two distinct regions of parameter space

FIG. 4. (Color online) Dependence of ECOM on ω0 for k = 4
and N = 5 (blue/gray line around ω0 = 0.5 and ω0 = 4) and N = 3
(low amplitude green/gray line around ω0 = 0.3 and ω0 = 1.4) show-
ing shift in frequency with particle number for internal mode energy
transfer, calculated using variational model and initial conditions
x(0) = 0.001 and x ′(0) = 0. Red circles give corresponding GP
results, EGP, for N = 5. Blue triangles show the size of x0(0) required
to initiate driving (according to right-hand axis), as predicted by the
variational model (N = 5). Other parameters are as follows: k = 4,
η = 0.05, α = 0.1.

for which energy is transferred to the soliton. The first region
occurs near resonance with the trap’s oscillator frequency of
0.1, in the effective-particle regime. The second is the width
oscillation regime, around the internal mode frequency for
width oscillations; 3.99 for N = 5. The remainder of this
section seeks to uncover some of the subtleties of these results.

We begin by first examining the energy response along the
dashed line in Fig. 3 corresponding to k = 4. The results are
shown in Fig. 4 as the solid line (blue). The energy transfer
profile displays spikes and dips, as well as abrupt cutoffs (the
extended regions where no transfer occurs). Both of these
features can be traced back to the fixed initial conditions
and fixed maximum time used in the calculations, and we
shall discuss these effects shortly. To determine the validity of
the variational approach for calculating the maximum energy
transferred we compare the results with the full numerical
simulation of the model (5) for the same initial conditions.
Using the system Hamiltonian,

H (t) =
∫ ∞

−∞

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+ (V (x) + U (x,t))|ψ |2 − 1

2
|ψ |4dx,

(13)

the energy transferred to the soliton (scaled by the soliton
mass) is given by

EGP(t) = H (t) − H (0)

N
. (14)

The results are shown as solid circles (red) in Fig. 4 and are
given by the maximum value of EGP obtained on a single
trajectory. There is good agreement between the variational
approach and the full GPE results for the effective-particle
regime and for the low frequency cutoff around ω0 = 0.9, how-
ever there is some discrepancy in the width oscillation regime
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around ω0 = 4. The variational approach appears to underes-
timate the energy transfer, and it also predicts a more limited
frequency range for which the transfer occurs. As mentioned
earlier, this is due to the excitation of higher-order modes in
the full numerical simulation and the resulting strong deviation
from the soliton ansatz. This will be discussed further below.

To explore the possible effects of different size solitons we
consider briefly the case of N = 3. The energy transfer for this
soliton is shown as the light solid (green) line in Fig. 4. The
most significant result is the shifting of the width oscillation
regime to lower frequencies. This is exactly as expected for
the internal mode mechanism. The broader N = 3 soliton has
a width oscillation frequency of approximately 1.4, which
agrees well with the frequency range for which excitation
occurs. This suggests that the internal mode mechanism may
be useful for selectively exciting solitons based on their mass,
however ultimately this excitation leads to the break-up of the
soliton. As the main distinction between the different mass
solitons is simply the change in width-excitation frequency,
we will proceed with only the N = 5 soliton case.

We now return to our claim that the features in the energy
transfer profile of Fig. 4 come from the initial conditions (for
both the effective-particle and the width oscillation regimes).
The initial condition dependence is most easily visualized in
the effective-particle Poincaré map, shown in Fig. 5. This map
has been constructed by integrating Eq. (10), with w = 0.399
held fixed, for a wide range of initial conditions and recording
for each trajectory the values of x0 and x ′

0 at the driving
frequency. The fixing of the width is necessary to remove high
energy chaotic trajectories with large width variation which
can appear near the (x0,x

′
0) origin, yet are well separated in

energy from our states of interest. Such states with high energy
and large width oscillations are unphysical, as break-up of
the soliton would occur before such excitations are observed.
We may thus safely exclude such states, and so simplify our
analysis of the Poincaré map. As can be seen in Fig. 5 for
ω0 = 0.5 the phase space is dominated by a large chaotic
region which encompasses the origin. Thus a soliton starting
near the origin is already inside the chaotic layer and may
explore the whole chaotic attractor (i.e., we expect the chaotic
dynamics to be ergodic). The variability in maximum energy
transfer is due to the limited time (up to t = 3000) for which
we follow the chaotic trajectory. We expect overall that a
trajectory will trace out the chaotic layer over long times,
however for the relatively short time examined here there can
be significant variability in the maximum extent achieved by
a given trajectory in the chaotic region.

The origin of the abrupt cutoff in energy transfer is evident if
we consider the Poincaré map at a frequency within the cutoff
region, for instance at ω0 = 2 [Fig. 5(b)]. In this case we see
that the origin is no longer in the chaotic layer and instead
the trajectory of a soliton starting near the origin is confined
to lie on a quasiperiodic orbit about the origin for which little
energy is transferred. We can explore the appearance of the
abrupt cutoff for different initial conditions. The triangles
shown in Fig. 4 correspond to the initial position x0(0) required
to see energy transfer to the soliton [under the condition that
x ′

0(0) = 0] and the values give a measure of the extent of the
quasiperiodic orbits about the origin. As is clear in Fig. 4
there is an almost linear growth and decay of the width of

FIG. 5. (Color online) Poincaré plots for N = 5, k = 4, and
(a) ω0 = 0.5 showing chaotic layer, and (b) ω = 2 showing existence
of quasiperiodic orbits at origin. The latter leads to an absence of
driving for small initial offset. Dashed and dotted lines correspond
to approximate maximum energy in the chaotic layer, and lowest
energy of quasiperiodic orbits, respectively. Calculation performed
with variational model with w = 0.399 fixed. Other parameters are
as follows: η = 0.05, α = 0.1.

the quasiperiodic layer about the origin. This linear growth
in the perturbation required to see driving is reminiscent
of parametric resonance and indeed we find the two are
closely linked. The position of the bifurcation from driving
to non-driving is analytically predicted by linearization of
Eq. (10) near the minimum of the potential. After linearization
we obtain the Mathieu equation,

ẍ0 + (α2x0 − A cos(ω0t))x0 = 0, (15)

where A = 1
2ηk3πwcsch(kπw/2). Standard results [23] on the

stability zones of the Mathieu equation predict the parametric
driving cutoff marked in Fig. 3 as a dotted line and show
good agreement with our variational results. We thus see
that for a soliton close to the trap center the underlying
mechanism of energy transfer in the effective-particle regime
is the parametric driving of the collective trap mode. In the
absence of a trapping potential we see no ongoing energy
transfer (although a soliton may be given kicks when the
effective potential is suddenly changed as observed in Ref. [5]).
In terms of the phase space of the full nonlinear system, energy
transfer occurs whenever the soliton is within the chaotic layer.
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FIG. 6. (Color online) Evolution of the position of the soliton
center-of-mass (a) and soliton center-of-mass energy (b) for ω0 = 0.5
for the variational results (solid lines, green) and numerical solution
to the GPE (dashed lines, blue). In both cases the initial conditions
are x(0) = 0.001, x ′(0) = 0. Horizontal dashed and dotted lines
correspond to the dashed and dotted lines shown in Fig. 5. Other
parameters are η = 0.05, N = 5, α = 0.1, k = 4.

The Poincaré map may also be used to predict the maximum
energy transfer possible in the system. We may extract from the
map the boundary of the chaotic layer [dashed line in Fig. 5(a)]
and compare this with the dynamics for a given trajectory. In
Fig. 6 we plot the center-of-mass motion [Fig. 6(a)] and the
energy transfer [Fig. 6(b)] for a soliton driven at ω0 = 0.5,
where the solid lines (in green) are the variational results and
the dashed lines (in blue) correspond to the GPE simulations.
On the same figures we plot the maximum extent (long dashes)
predicted by the boundary of the chaotic layer in Fig. 5(a), as
well as the extent corresponding to the appearance of the first
quasiperiodic orbits in the chaotic layer [light dotted line in
Fig. 5(a)]. We see that the variational trajectory does appear to
be bounded by the limit of the chaotic region and that it only
occasionally approaches the boundary. The line corresponding
to the lower energy at which quasiperiodic orbits first occur
appears to be around which the soliton spends most of its time.
The results corresponding to the GPE simulations appear to be
similar, although for the particular trajectory shown the energy
transfer appears less than that predicted by the variational
approach. It should be noted that in the frequency range for
which no driving from the origin is predicted the maximum
extent of the chaotic layer is significantly larger than the extent
at lower frequency [see Figs. 5(a) and 5(b)]. Thus, while the
soliton must initially be shifted relative to the origin, once
driving occurs the maximum energy transfer may be large,
although as we find below, in practice a large transfer of energy
to the soliton will generally lead to its destruction.

We now turn our attention to the width oscillation regime
predicted in Figs. 3 and 4. Unlike the parametric driving of the
collective mode of the trap this energy transfer regime occurs
when the driving is resonant with the internal mode frequencies
for width oscillations of the soliton. The width oscillations
are subsequently coupled to the center-of-mass mode of the
trapping potential through the driving, so leading to center-
of-mass motion of the soliton. Coupling between internal

FIG. 7. (Color online) Soliton evolution according to the GPE in
the width variation regime ω0 = 3.1 showing significant initial width
oscillations, subsequent coupling to the collective oscillation mode,
and deterioration of the soliton over time. (a) Plot of evolution with
time, with colors associated with density (maximum |�|2 ≈ 6.5),
dashed lines associated with density profiles on right; (b) density cut
at t = 850 showing deterioration of soliton (solid line) as compared
to initial condition (dashed line); (c) plot of soliton density at t = 180
(dashed line) and t = 181 (solid line) showing significant width
oscillations; (d) steady increase of EGP over time through excitation
of soliton internal modes; (e) decrease of soliton particle number over
time due to excitations and radiation; (f) oscillation and gradual decay
of soliton maximum density; (g) soliton center-of-mass position,
agreeing with results in (a), and showing saturation of maximum
extent.

and center-of-mass modes [16] has been seen for topological
solitons (2π -kinks) of the sine-Gordon equation [24], however
unlike in this earlier work we have no damping in our system
and energy pumped into the soliton internal mode grows
until the soliton is destroyed (with respect to sine-Gordon
kinks our solitons are much less robust to perturbations due
to their non-topological nature). We examine this response
in detail in Fig. 7. In Fig. 7(a) we see the development of
oscillations of the soliton position, accompanied by a decay
in the maximum soliton density. Figure 7(c) shows the soliton
profile at t = 180 (dashed line) and t = 181 (solid line) and
indicates the strong width oscillations occurring in the soliton
prior to center-of-mass motion. Figure 7(b) instead shows the
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soliton at t = 850 (solid line) relative to the input profile at
t = 0 (dashed line) and the strong deviation of the soliton
profile from the initial sech-type profile is clearly evident.
This coupling to other soliton internal modes ultimately leads
to the destruction of the soliton, and also is the origin of
the poor agreement between the variational and GPE results
in this regime. The steady increase of energy in the system
is evident in Fig. 7(d). From approximately t = 600 onwards
the center-of-mass motion ceases to increase [the plateau is
evident in Fig. 7(g)], indicating that the additional energy is
being pumped into the shape deformation of the soliton (and
radiation) rather than center-of-mass motion. The breakdown
of the soliton is evident in Figs. 7(e) and 7(f), which show the
soliton mass and soliton maximum density, respectively, with
both decaying with time. We find in general that if the relative
energy and mass is increased above approximately 0.5 the
soliton is significantly deformed. Overall these results suggest
that the width-oscillation regime may be used to selectively
move solitons depending on their mass if the excitation is
applied for a short time; otherwise excitation within the
width-oscillation regime is an effective way to destroy a soliton
in a particular mass range. We should point out that in the
presence of this dynamical instability the validity of the GPE
is no longer assured (see, for example, the breakdown of
the GPE due to dynamical instability in Ref. [25]). We can
thus only predict that destruction of the soliton will occur, but
we cannot examine the detail of the breakup within the GPE
theory.

V. EXPERIMENTAL CONSIDERATIONS

We now relate our normalized results to physical values, and
provide suggestions for direct experimental verification of our
work. To this end we consider the bright soliton experiment of
Strecker et al. [1]. This experiment was conducted using a Li7

BEC and resulted in solitons with at maximum ∼6000 atoms,
using a scattering length of as ≈ −3a0 (where a0 is the
Bohr radius). The radial and axial trapping frequencies in
the experiment were 800 Hz and 70 Hz, respectively. For
our α = 0.1 this gives ωx = ω‖/α = 2π × 70/0.1 ≈ 4.4 kHz
and consequently ax = 1.4 μm. This means that x = 1 in our
normalized units is 1.4 μm, and t = 3000 is approximately
680 ms. The physical lattice spacing corresponding to k = 4
is then 2.3 μm. This relatively large lattice spacing could be
achieved by intersecting the interfering lattice laser beams at
an angle (see discussion in Ref. [26]). The physical lattice
depth in units of recoil energy is 2Ul = 2ηh̄ωx/Er , which
for η = 0.05 gives a lattice depth of 0.05Er . The physical
lattice modulation frequency corresponding to ω0 = 0.5 is
2.2 kHz, which is well within the possibilities of acousto-optic
modulation [26]. Finally, asNtot |ψmax|2 ≈ −3.4 × 10−5 �
1 so the physical system is well described by the 1D
GPE (5).

We find therefore that our predicted results can be observed
using the standard bright soliton setup of Ref. [1] with the
addition of a weak (0.05Er ), long-wavelength (2.3 μm) optical
lattice modulated at a frequency of the order of 2 kHz. For
instance, to observe resonant driving of the soliton the lattice
depth could be modulated at 2.2 kHz and the system imaged
after 100 ms to show a large spatial deviation for the soliton.

If instead the modulating frequency is increased to 5 kHz
we predict no motion will be observed, even after 500 ms.
Increasing the modulating frequency significantly further, to
around 18 kHz, will lead to the destruction of the soliton by
500 ms.

VI. CONCLUSIONS

In this paper we have examined the energy transfer
mechanisms for a soliton confined in an external potential
and driven by a flashing optical lattice. In particular, we
have studied the dynamics of matter-wave solitons confined
in harmonic traps in the presence of time-space periodic
drivings through the solution of the Gross-Pitaevskii equation,
and through a variational approach which we find accurately
predicts the key phenomena in the system.

We have uncovered four regimes of behavior for the driven
soliton in the harmonic trap, depending on the relation between
the frequencies of the soliton modes and the frequency of the
driving. When the soliton motion is rapid compared to the
driving potential, and the spatial scales of the soliton and driv-
ing potential are similar, we find the soliton follows chaoti-
cally the minima of the driving potential. When the driving
frequency is of the order of the fundamental collective trap
mode of the soliton we find that the collective mode may
be excited and significant transfer of energy to the soliton
center-of-mass motion may occur. We refer to this regime
as the effective-particle regime since the soliton shape is only
slightly perturbed during the soliton dynamics. We have shown
that for small initial offsets from the trap minimum these
effective-particle dynamics may be described by the Mathieu
equation, indicating that the underlying mechanism for energy
transfer is the parametric driving of the collective soliton mode.
We have accurately predicted the frequency cutoff for this
driving. At higher frequencies we have found that no energy
transfer to the soliton occurs unless the soliton is initially
offset from the trap minimum by an amount proportional to
the detuning from the mode resonance. We have shown that
ultimately energy transfer occurs because the soliton is in a
chaotic layer in the phase space, and the offset is necessary
to place the soliton in this layer. At higher frequencies, when
the driving frequency is comparable to the width oscillation
internal mode, we showed that the system enters a second
regime of energy transfer. We have revealed that within this
regime the driving transfers energy to the internal mode and
this internal mode then couples to the collective trap mode,
leading to center-of-mass motion. The internal mode frequency
depends on the soliton particle number, with larger mass
solitons having a higher frequency of excitation. This provides
a possible energy selection mechanism based on the soliton
mass. We have found, however, that prolonged excitation of
the internal mode ultimately leads to the destruction of the
soliton due to strong shape deformations and radiation. We
suggest experimental parameters for the observation of these
effects.

These results open up the possibility of understanding
soliton dynamics and energy transfer in more complicated
potentials and controlling the soliton dynamics through the
careful tuning of a driving potential.
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