Bayesian approach to time-resolved tomography

Date

Authors

Myers, Glenn
Geleta, Matthew
Kingston, Andrew
Recur, Benoit
Sheppard, Adrian

Journal Title

Journal ISSN

Volume Title

Publisher

Optical Society of America

Abstract

Conventional X-ray micro-computed tomography (μCT) is unable to meet the need for real-time, high-resolution, time-resolved imaging of multi-phase fluid flow. High signal-to-noise-ratio (SNR) data acquisition is too slow and results in motion artefacts in the images, while fast acquisition is too noisy and results in poor image contrast. We present a Bayesian framework for time-resolved tomography that uses priors to drastically reduce the required amount of experiment data. This enables high-quality time-resolved imaging through a data acquisition protocol that is both rapid and high SNR. Here we show that the framework: (i) encompasses our previous, algorithms for imaging two-phase flow as limiting cases; (ii) produces more accurate results from imperfect (i.e. real) data, where it can be compared to our previous work; and (iii) is generalisable to previously intractable systems, such as three-phase flow.

Description

Keywords

Citation

Source

Optics Express

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until