Temporal phenomena in inductively coupled chlorine and argon–chlorine discharges

C. S. Corr, a) P. G. Steen, b) and W. G. Graham
School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland

(Received 30 August 2004; accepted 15 February 2005; published online 1 April 2005)

Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon–chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon–chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment. © 2005 American Institute of Physics. [DOI: 10.1063/1.1897060]

Negatives ion-related “instabilities” or modulations 1–9 in inductively coupled discharges have generated much interest as these discharges are widely used for industrial materials processing such as etching and deposition. These instability oscillations have previously been related to the capacitive processing such as etching and deposition. These instabilities have been observed and studied in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon–chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment.

The plasma was characterized 4 cm above the lower electrode using several diagnostics described previously. 5 The total light emission, from 450 nm to 1064 nm, was monitored using a fast photodiode. An unbiased Langmuir probe provided measurements of the floating potential. The probe-based laser photodetachment technique 5 was used to measure the chlorine negative ion fraction (n - /n e). The experimental arrangement consisted of a 5 mm diameter cylindrical beam, from a frequency quadrupled Nd:YAG laser (266 nm), aligned to be collinear with an uncompensated 0.5 mm diameter platinum wire probe positively biased to detect electrons detached from the negative ions. The necessary conditions 8,10,11 for probe voltage and laser beam energy were determined to ensure that the negative ion fractions were measured correctly. The laser photon energy (4.65 eV) was sufficient to photodetach Cl which is the dominant negative ion and has an electron affinity of 3.6 eV. 12,13 The negative ion fraction was determined from measurements of the dc electron current (I d) in the absence of the laser pulse and the increase in the current (ΔI) immediately after the pulse using the appropriate relationship. Here the photodetachment current, ΔI, will be presented as this gives a direct representation of the negative ion behavior in the discharge. Time-resolved measurements were made through the instability cycle by triggering measurements at a specific phase of the instability observed on the output of the photodiode. A delay generator allowed measurements to be made at regular intervals throughout the instability.

Probe measurements in reactive plasmas are sometimes thought to be unreliable due to contamination of the probe...
tip by coatings which will change the probe to plasma potential and reduce the measured collected current. To ensure accurate measurements were made, after each individual measurement (e.g., between changing the time delay, or changing plasma operating conditions), a pure argon discharge was run to clean the probe tip by drawing electron current sufficient to have it glow bright red. In any given data set (one plot) taken at different times (>1 month apart) the maximum relative fractional variation was less than 20%.

Two types of phenomena are discussed below: an instability that occurs in argon–chlorine mixtures in a fully matched system and regular fluctuations, bursts and modulations that are dependent on the matching conditions. When the discharge was optimally matched in argon–chlorine mixtures, i.e., the matching adjusted to produce zero measured reflected power, a variety of modulations, with different light emission temporal characteristics, were observed at very low pressures (<5 mTorr). These varied from a modulated series of sharp bursts (Fig. 2) to a very periodic behavior [Fig. 3(a)]. Recent detailed electrical measurements suggest that these modulations are not the E to H mode transitions discussed previously but rather fluctuations within the H mode. Chabert et al. report that a pure inductive instability can also be produced in their global model, depending on the matching conditions of the system. The modulations described below may well be related to this prediction of the model.

The highly modulated behavior, of the type shown in Fig. 3(a), particularly attracted our attention since it appeared to have the characteristics of a pulsed plasma. Time-resolved measurements of the electron saturation current and the photodetachment current signal (ΔF) confirmed this behavior [Fig. 3(b)]. The sudden increase of negative ions in the “off” period is the behavior often associated with the afterglow of a pulsed plasma when dissociative attachment to form negative ions becomes a dominant process. Here negative ions were only detected when the electron density began to decay at t~0.8 ms. This negative ion behavior is similar to previous reports in actively pulsed plasmas and is consistent with a calculated electron attachment rate (~n, Katt) of...
discharge, no instabilities were observed even when there was a substantial reflected power. Therefore negative ions are crucial for this instability to occur and it is not solely caused by the matching conditions.

In conclusion we have shown that the temporal behavior observed in low pressure plasmas are very dependent on the electronegative gas used and on the electrical operating conditions of the system. We find evidence of two distinct phenomena in our inductively coupled system. Matched argon–chlorine plasmas exhibit instabilities similar to those reported previously and attributed to the E to H mode transitions. In pure chlorine slight mismatching produces a variety of regular fluctuations, bursts and modulations. In particular a reproducible, controllable “pulsed plasma” mode, with potential advantageous for industrial applications such as etching in order to reduce charging effects and perhaps even for optical switches, can be established.

The authors wish to acknowledge fruitful discussions with Vic Law (Dublin City University) on the electrical aspects of this work.

29 μs for a gas pressure of 4 mTorr, assuming an electron temperature of 5 eV in the early afterglow. The increase in negative ions can be explained by an increase in the electron attachment rate caused by both an increase in the fraction of low energy electrons and a decrease in the electron attachment rate, leaving more Cl_2 to participate in the electron attachment process. By the end of the afterglow, the negative ions have been lost through nearly field-free diffusion and recombination with positive ions. At the beginning of the “on” period, gas breakdown is rapid with an ionization rate of $\sim n_e K_e$, giving a risetime of ~ 1 μs. During the “on” period negative ions are not observed due to the high dissociation of Cl_2 molecules ($e + \text{Cl}_2 \rightarrow 2\text{Cl} + e, \sim 3.2$ eV). The calculated rates are in good agreement with our experimental observations. Hence with this self-modulation there is a regular transition between an electron–ion plasma in the “on” period and an ion–ion plasma in the “off” period. It was possible to change the frequency of this “pulsing” instability from tens of hertz to kilohertz by slight variations of the forward power to reflected power ratio or the gas pressure. Recent detailed electrical measurements indicate that this pulsing behavior is a form of relaxation modulation created when the system causes the rf generator protection circuit to be activated, followed by attempts to achieve the set point.

It is important to note that when operating in a pure argon gas (Cl_2 period), gas breakdown is rapid with an ionization rate of $\sim n_e K_e$, recombination with positive ions. At the beginning of the “on” period, negative ions are not observed due to the high dissociation of Cl_2 molecules ($e + \text{Cl}_2 \rightarrow 2\text{Cl} + e, \sim 3.2$ eV). The calculated rates are in good agreement with our experimental observations. Hence with this self-modulation there is a regular transition between an electron–ion plasma in the “on” period and an ion–ion plasma in the “off” period. It was possible to change the frequency of this “pulsing” instability from tens of hertz to kilohertz by slight variations of the forward power to reflected power ratio or the gas pressure. Recent detailed electrical measurements indicate that this pulsing behavior is a form of relaxation modulation created when the system causes the rf generator protection circuit to be activated, followed by attempts to achieve the set point.

It is important to note that when operating in a pure argon gas (Cl_2 period), gas breakdown is rapid with an ionization rate of $\sim n_e K_e$, recombination with positive ions. At the beginning of the “on” period, negative ions are not observed due to the high dissociation of Cl_2 molecules ($e + \text{Cl}_2 \rightarrow 2\text{Cl} + e, \sim 3.2$ eV). The calculated rates are in good agreement with our experimental observations. Hence with this self-modulation there is a regular transition between an electron–ion plasma in the “on” period and an ion–ion plasma in the “off” period. It was possible to change the frequency of this “pulsing” instability from tens of hertz to kilohertz by slight variations of the forward power to reflected power ratio or the gas pressure. Recent detailed electrical measurements indicate that this pulsing behavior is a form of relaxation modulation created when the system causes the rf generator protection circuit to be activated, followed by attempts to achieve the set point.

It is important to note that when operating in a pure argon gas (Cl_2 period), gas breakdown is rapid with an ionization rate of $\sim n_e K_e$, recombination with positive ions. At the beginning of the “on” period, negative ions are not observed due to the high dissociation of Cl_2 molecules ($e + \text{Cl}_2 \rightarrow 2\text{Cl} + e, \sim 3.2$ eV). The calculated rates are in good agreement with our experimental observations. Hence with this self-modulation there is a regular transition between an electron–ion plasma in the “on” period and an ion–ion plasma in the “off” period. It was possible to change the frequency of this “pulsing” instability from tens of hertz to kilohertz by slight variations of the forward power to reflected power ratio or the gas pressure. Recent detailed electrical measurements indicate that this pulsing behavior is a form of relaxation modulation created when the system causes the rf generator protection circuit to be activated, followed by attempts to achieve the set point.

It is important to note that when operating in a pure argon gas (Cl_2 period), gas breakdown is rapid with an ionization rate of $\sim n_e K_e$, recombination with positive ions. At the beginning of the “on” period, negative ions are not observed due to the high dissociation of Cl_2 molecules ($e + \text{Cl}_2 \rightarrow 2\text{Cl} + e, \sim 3.2$ eV). The calculated rates are in good agreement with our experimental observations. Hence with this self-modulation there is a regular transition between an electron–ion plasma in the “on” period and an ion–ion plasma in the “off” period. It was possible to change the frequency of this “pulsing” instability from tens of hertz to kilohertz by slight variations of the forward power to reflected power ratio or the gas pressure. Recent detailed electrical measurements indicate that this pulsing behavior is a form of relaxation modulation created when the system causes the rf generator protection circuit to be activated, followed by attempts to achieve the set point.