Aanesland, AneCharles, C.Boswell, R. W.Lieberman, M. A.2015-10-012015-10-011070-664Xhttp://hdl.handle.net/1885/15749An analytical model is developed of an asymmetric electrode system immersed in a plasma, consisting of two dc-grounded electrodes, where the smaller one is biased at 13.56MHz. The model is compared with a set of experiments performed in a high density low pressure plasma source (an electron cyclotron resonance source) where a second electrode is immersed into the plasma and powered by radio frequency. Excellent agreement is obtained between the analytical model and the experimental results. It is found that the time average plasma potential and the direct current(dc) flowing in the system during steady state are strongly dependent on both the rf voltage (or power) and the area ratio between the larger and smaller electrodes. For area ratios larger than 80, the dc current is large and the plasma potential is constant with respect to the applied rf voltage. For area ratios smaller than 80 but larger than unity, the plasma potential increases linearly with the applied rf voltage, and the dc current is reduced compared to the large area ratio case.Copyright Information: http://www.sherpa.ac.uk/romeo/issn/1070-664X..."Publishers version/PDF may be used on author's personal website, institutional website or institutional repository" from SHERPA/RoMEO site (as at 1/10/15). Copyright 2005 American Inshttp://www.sherpa.ac.uk/romeo/issn/1070-664X..."Publishers version/PDF may be used on author's personal website, institutional website or institutional repository" from SHERPA/RoMEO site (as at 1/10/15). Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas and may be found at https://doi.org/10.1063/1.2089227"Keywords: Dc-grounded electrodes; Direct current (dc); Rf voltage; Steady state; Cyclotron resonance; DC machinery; Electric potential; Mathematical models; Plasmas; Radio frequency amplifiers; Grounding electrodesGrounded radio-frequency electrodes in contact with high density plasmas2005-10-1710.1063/1.20892272024-05-19