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Towards constitutive equations for the deep Earth1

B.L.N. Kennetta
2
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Abstract5

A new formulation of constitutive equations for states of high compression is6

introduced for isotropic media, exploiting a separation between hydrostatic and7

deviatoric components in strain energy. The strain energy is represented as8

functions of strain invariants, with one purely volumetric component and the other9

which vanishes for purely hydrostatic deformation. This approach preserves the10

form of familiar equations of state through the volumetric component, but allows11

the addition of volume and pressure dependence of the shear modulus from the12

deviatoric term. A suitable shear modulus representation to accompany a Keane13

equation of state is demonstrated.14

Keywords: Constitutive equations, Equations of State, Bulk Modulus, Shear15

Modulus, Deep Earth16

1. Introduction17

The pressures and temperatures in the Earth’s lower mantle are already high18

enough that properties of materials differ substantially from the ambient state.19

Experimental and ab initio computational methods have steadily improved, so20

that there is now substantial information available on the behaviour of the bulk21

modulus (K) at large compression. Recently the shear modulus (G) has also been22

probed for many materials of importance in the deep Earth.23

The dominant representation of material behaviour for high-pressure24
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studies is the use of the Birch-Murnaghan formulation coupled with a25

Mie-Grüneisen-Debye treatment of thermal effects. A systematic anisotropic26

formulation was provided by Stixrude and Lithgow-Bertollini (2005) from which27

bulk and shear moduli can be readily extracted.28

However, many experimental studies at high compression have favoured29

rather different representations of bulk modulus behaviour. Thus Sakai et al.30

(2016) in a study of the post-perovskite phase have preferred the Keane equation31

of state (EOS), having tested a range of parameterisations. Yet, except for32

Birch-Murnaghan, there is no corresponding development for the shear modulus.33

In this study we demonstrate that it is possible to develop an isotropic34

formulation of the constitutive equation between stress and strain that allows the35

retention of familiar equations of state for the bulk modulus, whilst including36

shear effects via a deviatoric component. This representation enlarges the37

repertoire of available ways of describing material behaviour under high pressure38

and temperature.39

2. Constitutive Equations40

A constitutive equation provides a specification of the relation between the41

stress tensor σ and a representation of strain E. We will initially consider states42

solely under compression, and briefly introduce thermal effects in Section 3. We43

will follow the continuum mechanics approach and notation of Kennett and Bunge44

(2008), making a development in terms of strain energyW.45

We consider a deformation from a reference state (unstressed) described by46

coordinates ξ to a current state described by coordinates x. The relation between47

the states is provided by the deformation gradient tensor F = ∂x/∂ξ, and J =48

det F = V/V0 is then the ratio of a volume element in the current state (V) to that in49

the reference state (V0). We also introduce the displacement gradient tensor A =50
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F− I, which provides a measure of the distortion introduced by the deformation.51

In terms of F and the Green strain E = 1
2
(FTF − I), the components of the52

stress tensor σ are given by53

Jσij = Fik
∂W

∂Fjk
= FikFjl

∂W

∂Ekl
, (1)54

where we use the Einstein summation convention of summation over repeated55

suffices.56

The nature of the strain energy W thus determines the relationship between57

stress and strain. For an elastic material, W can be equated to the specific58

Helmholtz free energy F/ρ, where ρ is density. In terms of specific quantities59

the thermodynamic relations are60

ρdW = −ρSdT + ρ0σijdAij, (2)61

in terms of the displacement gradient A, specific entropy S and temperature T .62

The stress tensor σij can be derived from F as63

σij =
ρ

ρ0

∂F
∂Aij

(3)64

since the volume ratio J can also be written as J = ρ0/ρ.65

The most complete current formulation of such a constitutive equation is that66

by Stixrude and Lithgow-Bertelloni (2005), based on the earlier work of Birch and67

Murnaghan. This employs a Taylor series expansion of the Helmholtz free energy68

about the reference state in terms of the Eulerian strain tensor e = 1
2
(I− [FFT ]−1).69

The volume transformation70 (
ρ

ρ0

)2
= J−2 = det[2e− I]. (4)71

The Helmholtz Free energy is then written as a power series in the Eulerian strain72

F = V0
∑
i

Bie
i, (5)73
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this Birch-Murnaghan formulation is commonly taken to 3 or 4 terms.74

By examining local perturbations from a stressed state the elastic moduli K,G75

can be extracted. The choice of Eulerian strain markedly reduces the influence76

of the third-order term in strain in (5). The third-order representation does not77

involve any second derivatives of moduli. When coupled with a representation78

of thermal pressures with a Debye-Mie-Grüneisen form this provides a complete79

system for characterising states with moderate pressure (as in Section 3).80

The disadvantage of this approach is that it essentially extrapolates from81

low pressure to higher pressures, depending strongly on the gradients of the82

moduli (K′
0, G

′
0) in the reference state. The situation is improved if high-pressure83

information is available for a material, but even then differences can arise from84

the way in which the inversion for the set of mechanical and thermal parameters85

is conducted. Kennett and Jackson (2009) have demonstrated that a full nonlinear86

inversion can be effective, and provide both uncertainty estimates and information87

about cross-coupling between parameters.88

2.1. Equations of State89

In many situations a reduced form of the constitutive equation is employed90

relating volume V , pressure p and temperature T . Such equations of state (EOS)91

can only describe the behaviour of the bulk modulus (K). A number of different92

formulations have been used to fit experimental data on material properties at high93

pressure, and can be written in terms of the density ratio x = ρ/ρ0 = V0/V = J−1.94

The ‘cold’ part of equations of state provides a specification of the pressure95

p as a function of volume p(V) or, equivalently, density ratio p(x). The bulk96

modulus K can be extracted from the expressions for the pressure in the EOS from97

K = −V(∂p/∂V)T = x(∂p/∂x). A further differentiation extracts the pressure98

derivative K′ = (∂K/∂p)T = x(∂K/∂p)/K.99
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The Vinet-Rydberg-Morse EOS (Vinet et al., 1987) is based on an atomic force100

model, with pressure represented as101

p = 3K0x
2/3[1− x−1/3] exp{ 3

2
(K′

0 − 1)[1− x
−1/3]}, (6)102

where K0 is the bulk-modulus at ambient conditions, and K′
0 = [∂K/∂p]0 is its103

pressure derivative. The bulk modulus as a function of the density ratio x is then104

K = K0x
2/3

[
2+ (ζ− 1)x−1/3 − ζx−2/3

]
exp{ζ[1− x−1/3]}, (7)105

where ζ = 3
2
(K′

0 − 1).106

Poirier and Tarantola (1998) used a similar development to the107

Birch-Murnaghan approach, but employed logarithmic strain, which gives a108

more rapid convergence. To second order, the pressure is109

p = K0x
[
ln x+ 1

2
(K′

0 − 2)(ln x)
2
]
. (8)110

Although originally derived using logarithmic strain, the Poirier-Tarantola EOS111

(8) can be recognised as simply a function of the strain invariant x = 1/J. The112

associated representation of the bulk modulus is113

K = K0x
[
1+ (K′

0 − 1) ln x+ 1
2
(K′

0 − 2)(ln x)
2
]
. (9)114

Stacey and Davis (2004) advocate the use of the Keane (1954) EOS for deep115

Earth studies because it links to properties at (nominal) infinite pressure:116

p = K0

[
K′
0

K′2∞ [xK
′∞ − 1] −

(
K′
0

K′∞ − 1

)
ln x

]
. (10)117

Thermodynamic arguments suggest a lower bound on K′∞ of 5/3. The Keane EOS118

can be regarded as an interpolant rather than just an extrapolant, though the high119

pressure limit enters as a parameter in fitting. The Keane representation of the120

bulk modulus has a rather simple form,121

K = K0

[
1+

K′
0

K′∞
(
xK

′∞ − 1
)]
. (11)122
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Each EOS should be regarded as a parametric representation of behaviour,123

and thus when different expressions are used to fit the same experimental data the124

values obtained for K0, K′
0 will be similar but not identical (see, e.g., Sakai et al.125

2016).126

None of these equations of state have any associated shear moduli. Further,127

unlike the Birch-Murnaghan expansion, none has any obvious extensions to tensor128

form that would allow extraction of shear properties.129

2.2. Isotropic Constitutive Equations130

If we concentrate attention on just the bulk modulus (K) and shear modulus131

(G) we can describe behaviour in terms of isotropic constitutive equations. The132

important materials in the deep Earth, e.g. bridgmanite and ferro-periclase, are133

intrinsically anisotropic at the crystal level. Nevertheless, the properties of134

aggregates can be adequately described in isotropic terms, as is commonly used.135

For an isotropic medium, the strain energyW can be represented as a function136

of invariants of the strain measures (Spencer, 1980). An extensive development137

has been made for large deformation in rubber-like materials in tension, whereas138

we need results for strong compression.139

The deformation gradient F can be written in terms of a stretching component140

and a rotation in two ways141

F = RU = VR (12)142

where U2 = FTF and V2 = FFT . U, V have the same eigenvalues, the principal143

stretches λ1, λ2, λ3, but the principal axes vary in orientation by the rotation R.144

The useful invariants ofU, V are145

J2 = λ21λ
2
2λ
2
3 = detU2, (13)146

a purely hydrostatic term, representing changes in volume, and147

L = J−2/3[λ21 + λ
2
2 + λ

2
3] = J

−2/3trΛ2 = J−2/3trU2. (14)148
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which concentrates on the deviatoric aspects of deformation.149

In such an isotropic medium the principal axes of the stress tensorσ align with150

those of V (the Eulerian triad), whereas the principal axes ofU and E are rotated151

by R (the Lagrangian triad). In terms of the principal stretches we can recast (1)152

in the form of an expression for the rth principal stress153

σr =
1

J
λr
∂W

∂λr
, no sum on r, (15)154

whilst recognising the rotation between the principal directions of the elements on155

the left- and right-hand sides of the equation (15).156

Now consider a strain energy functionW as a function of the stretch invariants157

J, L with two independent volume termsΦ(J) and Ψ(J):158

W = Φ(J) + {L− 3}Ψ(J); (16)159

incorporating a direct volume dependence in Φ(J) and a deviatoric component in160

the second term. For purely hydrostatic compression λ1 = λ2 = λ3 = λ̄, J = λ̄3161

and {L− 3} = λ̄−23λ̄2 − 3 = 0, so that the deviatoric term {L− 3}Ψ(J) = 0.162

As detailed in Appendix A1, the rth principal stress derived from the strain163

energy form (16) is164

σr =
∂Φ

∂J
+

2

J5/3

[
λ2r −

1
3
trΛ2

]
Ψ(J) + {L− 3}

∂Ψ

∂J
. (17)165

For a hydrostatic state, when L− 3 = 0, the dependence on Ψ(J) vanishes and so166

σr = −p =
∂Φ

∂J
, (18)167

i.e., isotropic stress independent of the form of Ψ(J). Each of the equation of168

state expressions in (6), (8) and (10) correspond to a specification of ∂Φ/∂J, even169

though the original derivations did not explicitly use the strain invariant.170

The full stress tensor171

σ = R

{(
∂Φ

∂J
+ {L− 3}

∂Ψ

∂J

)
I+

2

J5/3

[
U2 − 1

3
tr(U2)I

]
Ψ(J)

}
RT , (19)172
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with strong simplification in the hydrostatic case when {L − 3} = 0 and the term173

in Ψ vanishes to:174

−pI =
∂Φ

∂J
I. (20)175

The representation (16) with a separation of hydrostatic and deviatoric parts was176

suggested by neo-Hookean equations for rubbers, but now includes a volume177

(density) modulation of {L− 3} through Ψ(J) to allow for strong compression.178

The elastic moduli as a function of density (and hence pressure) can be179

extracted from the stress tensor in the form (19) by making a first order expansion180

about a hydrostatic compressed state with λr = λ̄(1 + er). Then, e.g., J =181

λ̄3(1+ tr{e}) +O(e2).182

The details of the first order expansion about the hydrostatic state are presented183

in Appendix A2. The rth principal stress in terms of e reduces to:184

σr = −p+ J
∂2Φ

∂J2
tr{e}+

2

J
Ψ(J)[er −

1
3
tr{e}]. (21)185

We can recognise the elastic moduli by comparison with the standard form for186

isotropic media187

σr = −p+ Ktr{e}+G[er − 1
3
tr{e}] (22)188

so that we have:189

Bulk Modulus K = J∂2Φ(J)/∂J2,

Shear Modulus G = 2Ψ(J)/J. (23)

We have thus demonstrated that it is possible to retain existing EOS190

representations of the bulk modulus K with a suitable specification of Φ(J), but191

to attach shear dependence through a new function of volume (density) Ψ(J). In192

terms of the density ratio x the shear modulus G and shear wavespeed β take the193

form:194

G =
2

J
Ψ(J) = 2xΨ(x), β2 =

G

ρ
= 2ρ0Ψ(x). (24)195
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Figure 1: Multiple linear segments for the relation between G/p and K/p for different parts of the

ak135 Earth model (Kennett et al., 1995). The depths for each segment are indicated. Multiple

depths indicate the presence of major discontinuities.

It is thus possible to capture the volume dependence of the shear modulus in a196

simple form. But, since the pressure equation relates only to K, the pressure197

derivative G′ will be coupled to K,K′.198

2.3. Building constitutive equations199

The treatment of Section 2.2 demonstrates that we can specify pressure and200

bulk modulus behaviour as a function of compression through a strain energy201

contribution Φ(J), with the description of the shear modulus to be assigned202

through a separate function Ψ(J).203

The group of equations of state considered in Section 2.1 already provide204

different representations of pressure and bulk modulus, and can thus be used205

directly. But, how then should we link in shear properties?206
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For current Earth Models, empirical relations of the form207

G = aK− bp, (25)208

provide good piecewise fits to segments of radial Earth structure (Figure 1), such209

as the entire lower mantle. Different coefficients a, b describe the behaviour210

of the various segments, indicated by different tones in Figure 1. At major211

discontinuities such as the ‘410 km’ and ‘660 km’ discontinuities or the inner-core212

boundary, the moduli K, G show discontinuous increases with depth at constant213

pressure so that segments can overlap.214

The empirical relation (25) suggests that we should seek functional forms for215

the representation of G(x) that incorporate the dependencies on density ratio of216

both bulk modulus and pressure for any particular equation of state. Thus the217

functional form of Ψ(J) combines elements fromΦ′(J), Φ′′(J).218

Although the Vinet-Rydberg-Morse equation of state is frequently effective219

in representing bulk modulus behaviour, it is based on a central potential model220

that does not readily relate to shear. We therefore demonstrate how a shear221

counterpart to the Keane EOS can be constructed. We combine the suite of222

functional dependencies from (10) and (11) to suggest a representation223

G(x) = G0

(
A ln x+ BxK

′∞ + (1− B)
)
, (26)224

with pressure derivative225

G′(x) =
∂G

∂p
=
x

K

∂G

∂x
=

G0

K(x)

(
A+ BK′∞xK′∞) , (27)226

where K(x) is given by (11). The constant A is unconstrained by the initial227

condition on the modulus, but can be extracted from G′
0 as228

A = G′
0

(
K0

G0

)
− BK′∞. (28)229

The expression for the shear modulus is thus strongly linked to that of the bulk230

modulus, but has three independent parameters G0, G′
0 and B. In a similar way231
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Figure 2: Bulk and shear modulus for the lower mantle as a function of the density ratio x, with

EOS fits using the same values of K0, K′
0 and a fit to the shear modulus using (26). BM: Birch-

Murnaghan; PT: Poirier-Tarantola; V: Vinet-Rydberg-Morse, Ke, Keane.
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Figure 3: Deviations of fits to Bulk and shear modulus for the lower mantle as a function of

the density ratio x. BM: Birch-Murnaghan; PT: Poirier-Tarantola; V: Vinet-Rydberg-Morse, Ke,

Keane; Ge: fit to the shear modulus using (26).

to the three parameter fit for the bulk modulus (K0, K′
0, K

′∞) this triad of shear232

parameters provides considerable flexibility in fitting data.233

The differences between the various styles of representation of dependence234

on compression x only become evident for conditions corresponding to the lower235

mantle and deeper. We use the K, G values from Table 1 of Stacey and Davis236

(2004), ignoring temperature effects, as a sample with a wide span of density237

ratios (Figure 2). We compare the suite of equations of state with the same238

nominal K0 value (206.06) and K′
0 (4.2), and show how we can use the shear239

equation (26), linked to the Keane EOS, to fit the G distribution.240

For density ratios up to 1.10 there is essentially no difference in the values241

from the third-order Birch-Murnaghan form or any of the other EOS. As242

compression increase the results diverge. The Vinet-Rydberg-Morse and Keane243

results fit the data points well, but the Birch-Murnaghan and Poirier-Trantola244
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forms deviate significantly for larger x. In each case, adjustment of the values245

of K′
0 can improve the fit, though not over the full range of compression.246

The Vinet-Rydberg-Morse results provide a good two-parameter fit to the247

specified K(x) values with deviations less than 2 GPa (∼0.4%), as can be248

seen in Figure 3 that compares the deviations from the specified values. The249

three-parameter fit with the Keane EOS (K′∞ = 2.575) is even better (<0.05%).250

With this same set of specified K0, K′
0, and K′∞, the shear representation (26) is251

readily tuned to match the G(x) exceptionally well (G0=130.02, G′
0=1.745, B =252

0.72), as can be seen in Figure 3.253

This example demonstrates that linked bulk and shear modulus representations254

can be satisfactorily developed exploiting the functional dependencies suggested255

by the empirical relation (25). The need is strongest for high compression, and256

shear information is beginning to become available in this regime as experimental257

techniques improve.258

3. Mie-Grüneisen-Debye thermal contribution259

In order to construct a full constitutive equation we need to include thermal260

effects as well as those associated with deformation. This can readily be done by261

including an additional contribution to the specific Helmholtz Free Energy:262

F(V, T) = FC(V, 0) + FD(V, T), (29)263

combining a ‘cold’ part FC(V, 0) and a ‘warm’ part FD(V, T) as in Stixrude and264

Lithgow-Bertelloni (2005). Then the contributions to the elastic moduli can be265

thought of in terms of trajectories in anM, T, p space (Figure 4).266

The contribution from lattice vibrations can be well represented by the Debye267

form268

ED(T) = 9nRT

(
T

θ

)3 ∫ θ/T
0

dξ
ξ3

exp(ξ) − 1
, (30)269
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Figure 4: Inclusion of thermal stress as an additional component inM, T, p space.

where n is the number of atoms in the unit cell, R is the gas constant. This270

simple form is effective since the net thermal effect is not sensitive to the details271

of the electron distribution (Stixrude and Lithgow-Bertelloni, 2005). The lattice272

vibrations add an additional thermal component to the pressure273

p(V, T) = pC(V, 0) +
γD

V
ED(V, T) (31)274

where γD is the Grüneisen parameter.275

The temperature dependence of pressure is given by276 [
∂p

∂T

]
V

= αKT(V, T) = γD
CV

V
(32)277

in terms of the isothermal bulk modulus KT = −V[∂p/∂V]T and the thermal278

expansion coefficient α = (1/V)(∂V/∂T)P. The other thermal parameters are279

based on the quasi-harmonic approximation280

γ = −
d lnν
d lnV

= γD, q =
d lnγ
d lnV

. (33)281

with also ηs as the shear strain derivative of the Grüneisen parameter γ. The282

adiabatic bulk modulus KS is then given by283

KS = KT(1+ αγT),

[
∂p

∂T

]
S

=
KS

γT
, (34)284
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Stixrude and Lithgow-Bertelloni (2005) provide convenient forms for285

the strain dependence of the Grüneisen parameter γ and ηs. Alternative286

representations such as that due to Al’tshuler et al (1987) can also be employed.287

4. Discussion and Conclusions288

By casting the strain energy functionW for an isotropic medium as a function289

of strain invariants in a form that allows complete separation between hydrostatic290

and deviatoric components, we have been able to retain familiar forms for291

equations of state with the addition of a full description of shear. The functional292

form of the shear modulus as a function of volume does not depend on the bulk293

modulus, but the representations are coupled through pressure dependence and294

pressure derivatives.295

The current approach thus provides a functional alternative to the use of the296

Birch-Murnaghan finite-strain formulation for shear, with considerable flexibility297

available in the description of shear behaviour. Further we do not need to impose298

adiabatic corrections to the shear modulus. The linear dependence between K/p299

and G/p for current Earth models, suggests that the elements included in the300

volume dependence of the shear modulus should be similar to those used for the301

bulk modulus and pressure. We have shown that a shear counterpart to the Keane302

EOS can be constructed exploiting these dependencies, exploiting the constraints303

from bulk-modulus fitting. There are no shear analogues of the thermodynamic304

constraints on the properties of the bulk modulus at extreme compression.305

For many materials the range of conditions accessible to experiment is306

still limited, and so properties at high compression will commonly require307

extrapolation. It is just in this high compression regime that, as noted by Poirier308

and Tarantola (1998), the differences in constitutive relations become important309

(Figures 2, 3). By bringing in constraints from very high pressures the problem310
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is converted to a more suitable interpolation, even though this also involves311

parameter fitting. With the addition of linked shear representations we can expect312

to improve the description of very high pressure phases, and hopefully understand313

the complex variations of shear wavespeed in seismic images of the lowermost314

mantle.315

The approach we have employed to link in a shear component to the316

constitutive equation is specific to the isotropic situation, and there is no317

immediate generalisation to the fully anisotropic case. Yet, the functional form318

of the constitutive equation (19) suggests that there may be merit in seeking319

anisotropic tensor forms in which stress depends on multiple measures of strain320

such as those proposed by Hill (1968). The family of Seth-Hill tensors have321

the same first order expansion, but different dependence on finite strain that may322

be exploited to produce suitable general constitutive relations.323

Appendix A. Appendix: mathematical derivations324

Appendix A.1. Principal stress relations325

For the strain energy326

W = Φ(J) + {L− 3}Ψ(J), with {L− 3} =

{
1

J−2/3
(λ21 + λ

2
2 + λ

2
3) − 3

}
, (A.1)327

the σr principal stress takes the form328

σr =
1

J
λr
∂W

∂λr
=
λr

J

∂J

∂λr

∂Φ

∂J
+
λr

J

[
∂

∂λr
{L− 3}Ψ(J) + {L− 3}

∂J

∂λr

∂Ψ

∂J

]
. (A.2)329

Now330

λr

J

∂J

∂λr
= 1, (A.3)

λr

J

∂

∂λr
{L− 3} =

1

2J−2/3

(
2λ2r −

2
3
(λ21 + λ

2
2 + λ

2
3)
)
. (A.4)
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Thus the σr principal stress takes the form331

σr =
∂Φ

∂J
+

2

J−5/3

[
λ2r −

1
3
trΛ2

]
+ {L− 3}

∂Ψ

∂J
. (A.5)332

For an isotropic medium the principal stress align with the Eulerian triad, and the333

principal stretches with the Eulerian triad so that the full stress tensor takes the334

form335

σ = R

{(
∂Φ

∂J
+ {L− 3}

∂Ψ

∂J

)
I+

2

J5/3

[
U2 − 1

3
tr(U2)I

]
Ψ(J)

}
RT , (A.6)336

with rotation by R.337

For a hydrostatic deformation the stretches are equal, λ1 = λ2 = λ3 = λ̄ and338

so J = λ̄3, λ21 −
1
3
trΛ2 = 0 and L− 3 = 0. The isotropic stress then reduces to339

−pI =
∂Φ

∂J
I (A.7)340

in terms of pressure p.341

Appendix A.2. Derivation of moduli342

Consider making a first order perturbation about a hydrostatic compressed343

state with λr = λ̄(1+er), so that J = λ̄3(1+ tr{e})+O(e2). Then the σr principal344

stress from (A.4) takes the form345

σr =
∂Φ

∂J
+ tr{e}J

∂2Φ

∂J2
+
2λ̄2

J5/3

(
er −

1
3
tr{e}

)
Ψ(J) (A.8)

+
2

J5/3

[
λ2r −

1
3
trΛ2

]
Ψ(J) +

2

J5/3

[
λ2r −

1
3
trΛ2

]
tr{e} J

∂Ψ

∂J

+[L− 3]

{
∂Ψ

∂J
+ tr{e} J

∂2Ψ

∂J2

}
+
λ̄2

J2/3
[3+ 2tr{e}− 3− 2tr{e}]

∂Ψ

∂J
.

For the hydrostatic base state all the terms in square brackets in the last two lines346

of (A.8) vanish, and so (A.8) reduces to347

σ1 = −p+ J
∂2Φ

∂J2
tr{e}+

2

J
Ψ(J)

(
e1 −

1
3
tr{e}

)
, (A.9)348

since −p = ∂Φ/∂J, and λ̄2 = J2/3.349
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The representation of the principal stress in terms of the bulk modulus K and350

shear modulus G is351

σr = −p+ Ktr{e}+G
(
er −

1
3
tr{e}

)
, (A.10)352

and thus we identify353

K = J
∂2Φ(J)

∂J2
, G =

2

J
Ψ(J). (A.11)354
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Highlights 

 

• New formulation of constitutive equations for deep Earth studies 

• Separation of hydrostatic and deviatoric components 

• Allows use of existing equations of state but with a shear modulus 

attached. 


