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Summary 13 

Herpes simplex viruses (HSV) are frequent human pathogens and the ability to engineer 14 

these viruses underpins much research into their biology and pathogenesis. Often the 15 

ultimate aim is to produce a virus that has the desired phenotypic change and no additional 16 

alterations in characteristics. This requires methods that minimally disrupt the genome and, 17 

for insertions of foreign DNA, sites must be found that can be engineered without disrupting 18 

HSV gene function or expression. This study advances both of these requirements. Firstly, 19 

the use of homologous recombination between the virus genome and plasmids in 20 

mammalian cells is a reliable way to engineer HSV such that minimal genome changes are 21 

made. This has most frequently been achieved by cotransfection of plasmid and isolated 22 

viral genomic DNA, but an alternative is to supply the virus genome by infection in a 23 

transfection-infection method. Such approaches can also incorporate CRISPR/Cas9 genome 24 

engineering methods. Current descriptions of infection-transfection methods, either with or 25 

without the addition of CRISPR/Cas9 targeting, are limited in detail and the extent of 26 

optimisation. In this study it was found that transfection efficiency and the length of 27 

homologous sequences improve the efficiency of recombination in these methods, but the 28 

targeting of the locus to be engineered by CRISPR/Cas9 nucleases has an overriding 29 

positive impact. Secondly, the intergenic space between UL26 and UL27 was reexamined as 30 

a site for the addition of foreign DNA and a position identified that allows insertions without 31 

compromising HSV growth in vitro or in vivo. 32 
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1. Introduction 35 

Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human pathogens, with HSV-36 

1 infecting approximately 60% of people worldwide (Cunningham et al., 2006; Bradley et al., 37 

2014). HSV is also extensively studied as the prototypical alphaherpesvirus due to the 38 

relative ease with which it can be grown and the wide variety of in vitro and in vivo models 39 

available (Simmons Nash, 1984; Sawtell Thompson, 1992; Shimeld et al., 1996; Leland 40 

Ginocchio, 2007; Hogk et al., 2013). Recombinant HSV expressing foreign genes have 41 

proven invaluable for studying viral pathogenesis and growth, as well as for screening for 42 

potential antiviral agents (Tanaka et al., 2004; Balliet et al., 2007; Ramachandran et al., 43 

2008; Ding et al., 2012). Further, HSV has shown some promise as a recombinant vaccine 44 

vector, especially against cancer (Markert et al., 2000; Rampling et al., 2000; Goins et al., 45 

2008). Ideally methods for making recombinant HSV should a) leave minimal changes other 46 

than those desired in the genome and b) where foreign genes are added, these should be 47 

inserted at sites that do not impact the growth and pathogenesis of the virus. 48 

The original method for making such viruses relies upon homologous recombination 49 

between a transfer plasmid that has copies of the viral sequences flanking the desired 50 

insertion site and the virus genome in cultured mammalian cells. The relatively low rate at 51 

which this occurs means that efficient methods are required to select or screen the few 52 

recombinant viruses that are produced (Tanaka et al., 2004; Ramachandran et al., 2008). 53 

More recently, recombineering of HSV genomes propagated as Bacterial Artificial 54 

Chromosomes, or BACs, has been used. However, viruses recovered from these usually 55 

contain residual BAC sequences and/or are attenuated in vivo due to other unwanted 56 

changes (Horsburgh et al., 1999; Tanaka et al., 2003; Gierasch et al., 2006). Therefore, the 57 

original methods remain essential tools that continue to be used. 58 

In non-BAC homologous recombination-based methods, cotransfection of viral and transfer 59 

plasmid DNA is the most common way of generating recombinant HSV. While detailed 60 



4 
 

reports in the literature are sparce, anecdotally this relies heavily on obtaining very high 61 

quality HSV genomic DNA. A simpler alternative is to provide the HSV genome by infection 62 

of cells transfected with a transfer plasmid (transfection/infection) and at least one report of 63 

the use of such as method can be found, but few details were included (Orr et al., 2005). 64 

Transfection/infection is also a common way to engineer poxviruses, which have large 65 

dsDNA genomes that unlike HSV are non-infectious (Mackett et al., 1984; Wong et al., 66 

2011).  In addition, such methods can be combined with CRISPR/Cas9 genome editing tools 67 

(Bi et al., 2014; Suenaga et al., 2014). However, thus far the improvement in recombination 68 

frequency associated with the application of CRISPR/Cas9 targeting has not been made 69 

against optimised transfection/infection methods. 70 

A variety of different locations have been identified in the HSV-1 genome which allow the 71 

insertion of foreign DNA with minimal disruption of genes. These include intergenic regions 72 

between UL3 and UL4, UL50 and UL51 and US1 and US2, but only the first of these has 73 

been well characterized (Tanaka et al., 2004; Morimoto et al., 2009). In each case, the 74 

genes either side of the insertion site are convergently transcribed and each has its own 75 

polyA signal between which there is enough sequence for an insertion to be made without 76 

disrupting either transcription unit. Most other common sites of insertion, such as the 77 

US5/US6 location and UL23 (thymidine kinase) lead to disruption of some ORFs, generally 78 

leading to attenuation in vivo (Rinaldi et al., 1999; Proenca et al., 2008). The space between 79 

UL26 (glycoprotein B, gB) and UL27 genes has the ideal structure described above, but 80 

previous attempts to use this insertion site have led to some loss of virulence (Halford et al., 81 

2004; Orr et al., 2005). It remains possible that this site can accept insertions without 82 

compromising virulence if these are targeted to ensure there is no disruption of the 83 

transcription units, including polyA sites. 84 

The aims of this study were to explore transfection-infections approaches for generating 85 

recombinant HSV, including CRISPR/Cas9 targeting and to identify a precise position 86 

between UL26 and UL27 where foreign genes can be inserted without loss of virulence. 87 
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 88 

2. Materials and Methods 89 

2.1. Viruses and cell lines 90 

The unmodified HSV-1 strain KOS was provided by Francis Carbone (University of 91 

Melbourne, Australia).  HSV-1 pCmC contains the fluorescent reporter mCherry under the 92 

control of the cytomegalovirus immediate early (CMV IE) promoter located in the intergenic 93 

region between UL3 and UL4 of HSV-1 KOS (HSV-1 KOS 11649).   This virus was 94 

constructed by standard homologous recombination based methods following four rounds of 95 

plaque purification. 96 

All viruses were grown and titrated on Vero cells (ATCC CCL-81).  The immortalized Vero 97 

cell line was maintained in Minimal Essential Medium (MEM; Gibco/Life Technologies, 98 

Carlsbad, USA) supplemented with 2 or 10% heat-inactivated fetal calf serum, 5 mM 4-(2-99 

hydroxyethyl)-1-piperazineethanesulfonic acid, 4 mM L-glutamine and 50 mM 2-100 

mercaptoethanol.  All transfections were carried out on 293A cells with Lipofectamine 2000 101 

(Life Technologies, Carlsbad, USA).  102 

2.2. Plasmid construction 103 

All sequence references below are to the HSV-1 genome, accession JQ673480. To 104 

construct the generic transfer vector pT UL3/4, the UL3/UL4 region (HSV-1 10534-12682) 105 

was cloned into pTracer CMV/bsd (Life Technologies, Carlsbad, USA) by In-Fusion cloning 106 

(Clontech Laboratories, Mountain View, USA). These HSV-1 sequences were generated in 107 

two polymerase chain reactions (PCR) to enable the addition of EcoRV, PstI and SpeI sites 108 

between the polyA signals of UL3 and UL4 (HSV-1 11649) by the use of extended primers to 109 

make pT UL3/4.  110 

The cytomegalovirus immediate early (CMV IE) promoter and bovine growth hormone (BGH) 111 

poly A termination sequence were amplified from pTracer CMV/bsd and the eGFP Cre 112 
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cassette was amplified from pIGCN21 (Lee et al., 2001).  These fragments were then cloned 113 

into the SpeI site of pT UL3/4 by In-Fusion cloning to construct pT pC_eGC (Fig 1A). 114 

To construct plasmids with different lengths of homology sequence, sequences flanking the 115 

intergenic UL3/UL4 region were amplified and cloned into the pCR bluntII vector (Life 116 

Technologies, Carlsbad, USA).  Four plasmids were made in this way, namely pU3.0.5kbF 117 

(HSV-1 11200-12179), pU3.1kbF (HSV-1 10700-12722), pU3.2kbF (HSV-1 9803-13698) 118 

and pU3.3kbF (HSV-1 8689-14663), such that a MCS containing KpnI and NotI sites are 119 

inserted in the middle of a fragment of the UL3/UL4 intergenic region (HSV-1 11649).  The 120 

following three synthetically constructed elements were inserted into the MCS of each of 121 

these plasmids (Genscript, Piscataway, USA): A) The ICP47 promoter lacking the origin of 122 

replication (OriS) sequence (Summers Leib, 2002). The sequence encoding the OriS was 123 

removed as it has been shown that this plays no role in regulating the transcription of ICP47 124 

(Summers Leib, 2002). B) A Venus reporter gene containing a SV40 nuclear localization 125 

sequence. C) A BGH polyA terminator sequence. The resulting plasmids were named 126 

pU3.0.5kbF-Venus, pU3.1kbF-Venus, pU3.2kbF-Venus and pU3.3kbF-Venus (Fig 2A). 127 

To construct pU26/7, the UL26/UL27 region (HSV-1 51431-54154) with EcoRV, NotI and 128 

SpeI sites added between the two polyA signals (at HSV-1 52809) was inserted into pUC19 129 

(Clontech Laboratories, Mountain View, USA)  to make pU26/7.  Into the NotI site of this 130 

generic vector was inserted the ICP47 promoter (described above) upstream of a Tdtomato 131 

gene with a BGH polyA termination sequence (from pCIGH3) to make pU26/7 132 

pICP47/TdTom (Fig 3C). 133 

The plasmid pX330 (Addgene plasmid 42230) has been previously (Cong et al., 2013).  The 134 

plasmid pX330-mC was constructed by annealing two complimentary oligodeoxynucleotides 135 

(CACCGGATAACATGGCCATCATCA and AAACTGATGATGGCCATGTTATCC) and  136 

ligating the resulting dsDNA fragment into the BbsI site of pX330.  137 

2.3. Generation of recombinant HSV-1 by transfection/infection 138 
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Recombinant HSV-1 were produced by transfection of 293A cells with the required amount 139 

of plasmid DNA.  After 5 hours incubation (37°C, 5% CO2), cells were infected with HSV-1 140 

KOS at an appropriate MOI.  All cell-associated and supernatant virus was harvested from 141 

the transfection with the aid of a cell lifter.  This was then subjected to three cycles of 142 

freezing and thawing to lyse the cells and release the virus.  The virus was then serially 143 

diluted and used to infect fresh cultures of Vero cells overlaid with phenol red-free semisolid 144 

MEM-2 with 0.4% (w/v) carboxy-methyl cellulose (M2-CMC).  This allowed the development 145 

of individual plaques after 48 hours which were then able to be identified and selected by 146 

fluorescence microscopy.  Multiple rounds of plaque purification were carried out as 147 

appropriate. PCR screening and sequencing was used to confirm the correct modification 148 

occurred and to identify plaque isolates free of parental virus where appropriate.  Two 149 

independent recombinant viruses were isolated from parallel transfection/infection 150 

experiments. 151 

2.4. Replication in vitro 152 

Confluent Vero cell monolayers in six well plates were infected with 1 × 104 PFU (MOI 0.01) 153 

virus in 1 mL M0.  After 1 h at 37°C, virus inocula were removed, the cell monolayer was 154 

washed once and 2 mL fresh M2 added.  The first samples (zero hour) were harvested 155 

immediately after the addition of fresh media and virus from further wells was collected at the 156 

times indicated. To harvest virus, cells were scraped into the media so that both were 157 

collected in a single sample. These were subjected to three freeze/thaw cycles and virus 158 

titres in each determined by plaque assay on Vero cells. 159 

2.5. Measurement of Plaque Size 160 

Confluent Vero cell monolayers in six well plates were infected with 50 PFU virus.  After 161 

incubation for 90 min at 37°C, 5% CO2, the inoculum was replaced with M2-CMC.  48 hours 162 

later, cells were crystal violet stained and 30 representative photographs per virus were 163 
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taken at 100x magnification using an Olympus CKX41 microscope and DP20 camera.  164 

Plaque area was calculated using ImageJ (Rasband, 1997-2012). 165 

2.6. Mice and infections 166 

This study was carried out in accordance with the Australian NHMRC guidelines contained 167 

within the Australian Code of Practice for the Care and Use of Animals for Scientific 168 

Purposes.  Female specific pathogen free C57Bl/6 mice greater than 8 weeks of age were 169 

obtained from the APF (Canberra, Australia).  Mice were housed and experiments carried 170 

out according to ethical requirements and under approval of the Animal Ethics Committee of 171 

the Australian National University (Protocol Number: A2011.001).   172 

To assess the virulence of HSV, a mouse flank infection model was used where virus was 173 

introduced onto the flanks of shaved mice using a tattoo machine (Figure S1).  This is a 174 

variation of the flank scarification or abrasion technique sometimes referred to as the 175 

zosteriform model (Blyth et al., 1984; Van Lint et al., 2004).  The advantage of tattooing over 176 

scarification is that the skin remains unbroken by the inoculation, so on the first day after 177 

infection there is no sign of damage to the skin allowing the development of the primary 178 

lesion to be clearly observed from two days later (Fig S1A). After five days, secondary (or 179 

zosteriform) spread is seen, usually peaking on day seven and typically all lesions resolve by 180 

14 days after infection (Fig. S1B). 181 

Female C57Bl/6 mice eight weeks of age or greater were used. Mice were anaesthetized by 182 

i.p. injection of avertin (1,1,1 Tribromoethanol in 2-methyl-2-butanol) given at 250 mg/kg and 183 

kept warm when not being handled using an infrared lamp. The left flank of each mouse was 184 

clipped and depilated with Veet cream (Reckitt Benckiser; Sydney, Australia).  For tattooing, 185 

a 10 round shader needle (a cluster containing 10 needles in a round pattern) was mounted 186 

on a Swiss rotary tattoo machine (Pullman Tools; Widnau, Switzerland) and charged with 187 

virus by dipping for 10 seconds in a suspension containing 1 × 108 PFU/mL HSV. The site 188 

for infection was determined by identifying the tip of the spleen (seen through the skin) and a 189 
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5 × 5 mm area was tattooed for 10 seconds with gentle pressure and even coverage of the 190 

area. Mice were monitored daily following infection for lesion development. Where mice have 191 

been weighed they generally lose around 5% of body weight in the days after the infection 192 

procedure and then recover;  there is no evidence of generalized illness as a result of lesion 193 

formation. 194 

2.7. Titration of virus from skin and dorsal root ganglia (DRG) 195 

A 1 cm2 portion of skin located over the inoculation site and the 10 DRG on the ipsilateral 196 

side corresponding to spinal levels L1 – T5 were collected from each mouse 5 days after 197 

infection. Samples were homogenized in M2, subjected to three cycles of freeze/thawing and 198 

infectious virus quantified by plaque assay on Vero cells. 199 

2.8. Statistical analysis 200 

Statistical comparisons were performed using an unpaired t-test with Welch’s correction with 201 

the aid of Prism software (version 5.01; GraphPad, La Jolla, USA). 202 

 203 

3. Results 204 

3.1. Transfection/infection methods for generating recombinant HSV-1 205 

To establish the transfection/infection method a recombinant HSV was designed that would 206 

express a fusion protein of enhanced green fluorescent protein and Cre recombinase 207 

(eGFP/Cre) using the cytomegalovirus immediate early (CMV IE) promoter from the 208 

intergenic space between HSV UL3 and UL4 genes. A fluorescent reporter was chosen to 209 

enable the easy identification of recombinant viruses and the UL3/UL4 intergenic region was 210 

selected because insertions at this site do not compromise growth or virulence (Tanaka et 211 

al., 2004; Morimoto et al., 2009). The point of insertion was between the two native polyA 212 

sequences which are necessary for proper termination of UL3, UL4 and UL5 transcription 213 
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(Morimoto et al., 2009).  The plasmid used (pT pC_eGC) and the eGFP/Cre expression 214 

cassette are shown in Figure 1A.  215 

Three parameters associated with infection/transfection were tested to determine which 216 

were important determinants of the frequency of recombinant virus generation: 1) the 217 

amount of virus, or multiplicity of infection (MOI); 2) the efficiency of transfection; 3) the 218 

length of flanking region sequence.   219 

To determine if the amount of virus used to infect the cells influenced the frequency of 220 

recombination, 293A cells were transfected with linearized pT pC_eGC DNA five hours prior 221 

to infection with HSV-1 strain KOS at MOIs of 0.01, 0.001 or 0.0001. Virus was harvested 222 

after three days and serial dilutions used to infect new cultures. This allowed quantification of 223 

eGFP+ and eGFP- progeny. As expected, as MOI increased, total virus yields were 224 

correspondingly higher but proportions of eGFP+ and eGFP- plaques remained similar (Fig 225 

1B). 226 

Next, to examine transfection efficiency, varied amounts of linearized or circular plasmids 227 

were transfected into 293A cells to achieve differing transfection efficiencies as measured by 228 

flow cytometry. These cells were then infected with HSV-1 KOS at an MOI of 0.01 and after 229 

three days, virus was harvested. Serial dilutions of this virus were used to infect new cultures 230 

and the proportion of total plaques that were eGFP+ was determined (Fig 1C, D). Higher 231 

transfection efficiency improved the proportion of eGFP+ plaques in a roughly linear manner 232 

and notably, efficiencies below 20% did not reliably produce any recombinants. 233 

The third parameter tested was the length of viral sequences flanking the insertion site used 234 

in the transfer plasmid. Plasmids were generated that contained left and right flanks either 235 

side of the UL3/UL4 intergenic region of approximately 0.5, 1, 2, or 3 kb (Fig 2A). Venus was 236 

chosen as a marker so that we could continue to use fluorescence to identify recombinant 237 

viruses while widening the range of foreign genes shown to be inserted using the 238 
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transfection/infection method.  In two independent experiments, these Venus transfer 239 

plasmids were transfected into 293A cells with conditions that ensured transfection efficiency 240 

was similar (~70 - 80% by flow cytometry, not shown) and then infected with HSV-1 at an 241 

MOI of 0.01. As in previous experiments, virus was harvested after 3 days. The proportion of 242 

Venus+ plaques of total virus was determined by fluorescence microscopy of cell monolayers 243 

infected with serial dilutions of the progeny from these transfection/infections (Fig 2B). In 244 

both experiments the frequency of Venus+ plaques was directly proportional to the length of 245 

the flanking sequence in the transfer plasmids with the range of efficiency across the 246 

plasmids being in the order of 10-fold. 247 

3.2. CRISPR/Cas9 targeting of the recombination site has an overriding influence on  248 

recombination frequency of transfection-infection methods 249 

The methods detailed above gave recombination frequencies high enough to allow visual 250 

selection of viruses engineered to express a fluorescent marker, but even with the 251 

optimizations made thus far it would remain challenging to identify recombinants without this 252 

visual aid. The recently developed use of CRISPR/Cas9 genome engineering approaches 253 

offers an avenue to improve the efficiency of homologous recombination in a variety of 254 

settings (Cong et al., 2013). These methods use an RNA guided nuclease (Cas9) to cleave 255 

dsDNA at a desired position and these double-stranded breaks can be repaired either by 256 

non-homologous end joining or, if a suitable template is available, homologous 257 

recombination (Cong et al., 2013). There have been two reported applications that used 258 

CRISPR/Cas9 to aid the generation of recombinant HSV-1, but little optimisation was 259 

reported (Bi et al., 2014; Suenaga et al., 2014). 260 

First, a preliminary experiment was done that found co-transfection of the transfer plasmid 261 

with a CRISPR/Cas9 construct designed to cleave the HSV genome at the site of 262 

recombination greatly improved the frequency of recombinant HSV that can be obtained by 263 

transfection-infection (not shown). Next, the impact of two parameters associated with the 264 
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incorporation of CRISPR/Cas9 plasmids into the strategy were examined 1) the length of the 265 

flanking region sequence in the transfer plasmid and 2) the ratio of the CRISPR-Cas9 266 

targeting plasmid to the repair plasmid used. 267 

To test the first of these, Venus transfer plasmids (as described in Fig. 2A) were transfected 268 

into 293A cells such that transfection efficiency was similar along with either pX330-mC (that 269 

will cleave mCherry coding sequence) or pX330 (a control with no targeting sequence) in a 270 

1:1 ratio. Five hours later, these cells were infected with HSV-1 pCmC at an MOI of 0.01.  271 

Virus was harvested after 3 days and used to infect new cultures and the numbers of 272 

Venus+, mCherry+ and non-fluorescent plaques were determined by microscopy (Fig 3A). 273 

The use of the mCherry-targeting pX330-mC had a dramatic effect, improving the frequency 274 

of Venus+ plaques by >100-fold and up to almost a third of all plaques in one case. In the 275 

presence of the mCherry targeting plasmid, increasing the length of flanking region 276 

sequence made only a marginal difference in two independent experiments. 277 

In the previous experiment a substantial proportion of plaques were non-fluorescent, 278 

indicating that the genome had been cleaved by CRISPR-Cas9, but was repaired without 279 

recombination with the repair plasmid.  Therefore, it was reasoned that altering the ratio of 280 

the repair plasmid DNA to pX330-mC may increase the frequency of the desired 281 

recombinant virus. To test this 293A cells were transfected with 2 µg of the repair plasmid 282 

pU3.1kbF-Venus and various amounts of pX330 or pX330-mC to generate molar ratios of 283 

4:1, 2:1, 1:1 or 1:2, and then infected with HSV-1 pCmC at an MOI of 0.01.  Virus was 284 

harvested after 3 days and the proportion of Venus+, mCherry+ and fluorescence negative 285 

plaques determined by microscopy of cell monolayers infected with serial dilutions of the 286 

progeny from these transfection/infections (Fig. 3B). This experiment further confirmed the 287 

large improvement in efficiency associated with CRISPR/Cas9 targeting. Altering the ratio of 288 

the CRISPR-Cas9 plasmid to the repair plasmid only had a modest impact on the frequency 289 

of fluorescent virus generated and this was repeated in a second experiment. 290 
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3.3. Foreign genes can be inserted between UL26 and UL27 of HSV-1 without loss of 291 

virulence 292 

To develop the UL26-UL27 intergenic region as a site that can accept foreign genes 293 

available annotations of this region with predicted transcription termination sites were 294 

inspected. An insertion position between base pairs 52809 and 52810 (based on the KOS 295 

sequence, accession JQ673480) was chosen being roughly equidistant between the full 296 

polyA sites for these transcription units (Fig 3A, B). This information was used to design 297 

transfer plasmid pUC26/7 into which a cassette containing the ICP47 promoter, TdTomato 298 

coding sequence and a BGH polyA signal was inserted (Fig 4C). The transfection/infection 299 

method detailed above, without the aid of CRISPR/Cas9 was used to generate recombinant 300 

virus. Two TdTomato+ plaques were selected from the progeny of two independent 301 

transfection/infections and pure stocks of both were obtained after three rounds of plaque 302 

purification. One of these (named HSV-1 pICP47/TdTom) was chosen for further 303 

examination and restriction digests of the genome and PCR and DNA sequencing done to 304 

confirm its integrity (not shown). This virus was found to have identical replication kinetics 305 

compared with the parent KOS in Vero cells (Fig 3D).  In addition, HSV-1 pICP47/TdTom 306 

also exhibited a normal plaque phenotype (by microscopy) and size (Fig 3E&7; ImageJ, 307 

Rasband, 1997-2012).  Finally this virus was compared with its parent HSV-1 KOS in a flank 308 

model of infection in which virus is introduced by tattoo (Supplemental Fig. S1). The 309 

virulence of the HSV-1 pICP47/TdTom was similar to KOS based on observation of lesions 310 

(not shown) and virus loads in DRG and skin (Fig 3G). 311 

 312 

4. Discussion 313 

This study shows that transfection/infection methods are sufficiently efficient to reliably 314 

generate recombinant HSVs where a strong marker for screening, for example a fluorescent 315 

protein, is available. In total this method has been used to generate ten viruses using either 316 
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the UL3-UL4 or the UL26-UL27 sites and expressing a range of fluorescent proteins under 317 

the control of several promoters, some of which are published elsewhere (Mackay et al., 318 

2013; Macleod et al., 2014). For this approach, transfection efficiency is of key importance, 319 

with efficiencies of >20% being required and higher efficiencies being preferable. In addition, 320 

increasing flank sequence lengths in transfer plasmids improved the frequency of 321 

recombination in a roughly linear manner. However, these improvements need to be 322 

weighed against the lower transfection efficiencies typically achieved with larger plasmids. 323 

Despite influencing efficiency by up to 10-fold, none of these optimizations improved 324 

efficiency to the point that recombinant viruses could be identified by PCR screening in the 325 

absence of an additional selectable marker to enrich the desired viruses. By contrast the use 326 

of CRISPR/Cas9 targeting dramatically improved the frequency of initial recombination. The 327 

data above show in some cases a third of all progeny are recombinant using this method. 328 

Several more viruses have been generated using this method and frequencies have been as 329 

high as 70% and viruses with small deletions and no markers have been made (not shown). 330 

Further, the importance of using transfer plasmids with long homology sequences flanking 331 

the insertion site is greatly reduced when CRISPR/Cas9 is used. The availability of 332 

CRISPR/Cas9 plasmids in repositories and the relative insensitivity of the methods to 333 

changes in protocol such as ratio of plasmid suggest that adoption of this technology will 334 

greatly expand the accessibility of recombinant virus generation for HSV-1.  335 

 336 

In terms of developing insertion sites, a position between the polyA signals associated with 337 

the UL26 and UL27 transcription units was chosen and a plasmid designed so that no HSV 338 

sequence was deleted. It remains unclear why previous attempts to use this region to add 339 

genes as led to attenuation (Halford et al., 2004; Orr et al., 2005). However, in the best 340 

described case, the insertion disrupted the native polyA signal of UL26, which was then 341 

replaced with one from SV40 (Orr et al., 2005). This suggests that all elements associated 342 

with transcription in this region cannot be easily replaced or predicted. The design detailed in 343 

Figure 4 avoids these problems as shown by the generation of HSV-1 pICP47/TdTom, which 344 
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had wild type virulence. This establishes a new site that can be used for future recombinant 345 

viruses. 346 
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 458 

Figure Legends 459 

Figure 1. Role of virus multiplicity and transfection efficiency on recombinant HSV 460 

generation by transfection/infection. (A) Map of pT pC_eGC indicating the base pair 461 

positions of the two flanking regions (in grey), using numbers from HSV-1 KOS (accession 462 

JQ673480), other features are as marked. (B) Effect of MOI on virus output of 463 

transfection/infections. 293A monolayers were  transfected with pT pC_eGC and infected at 464 

the MOIs shown 5 hours later. Progeny of these transfection/infections at 72 hrs were used 465 

to infect monolayers of Vero cells, and the number of total (open bars) and eGFP+ (black 466 

bars) plaques counted. Results are representative of two experiments. (C and D) The effect 467 

of transfection efficiency was tested for linearized (C) and intact (D) plasmids. 293A were  468 

transfected with pT pC_eGC to achieve a range of efficiencies and infected at an MOI of 469 

0.01 5 hours later. Progeny of these transfection/infections were collected at 72 hours to 470 

determine the rate of recombinant virus generation. The proportion of eGFP+ plaques is 471 

plotted against the transfection efficiency as determined by flow cytometry.  472 

Figure 2. Influence of flank sequence length on recombinant HSV generation by 473 

transfection/infection. (A) Representative map of plasmids with different lengths of 474 

UL3/UL4 flanking sequences. Four different lengths were used as depicted by the concentric 475 
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grey boxes to generate plasmids pU3.0.5kbF (HSV-1 KOS 11200-12179), pU3.1kbF (HSV-1 476 

KOS 10700-12722), pU3.2kbF (HSV-1 KOS 9803-13698) and pU3.3kbF (HSV-1 KOS 8689-477 

14663). Other features are as marked. (B) 293A monolayers were  transfected with the each 478 

of the plasmids shown in (A) and infected at an MOI of 0.01 5 hours later. Progeny of these 479 

transfection/infections was harvested at 72 hours and used to infect monolayers of Vero 480 

cells.  The percentage of Venus+ plaques of all HSV plaques is shown. Two independent 481 

experiments are indicated with markers in grey and black.  482 

Figure 3. Targeting the site of insertion using CRISPR-Cas9 has an overriding effect 483 

on recombination frequency. (A) 293A monolayers were cotransfected with 2 µg of one of 484 

the plasmids shown in Fig. 2A and either pX330 or pX330-mC in a 1:1 ratio, and infected 485 

with HSV-1 pCmC at an MOI of 0.01 5 hours later.  Progeny of  these transfection/infections 486 

was harvested at 72 hours and used to infect monolayers of Vero cells.  Pie charts show the 487 

percentage of Venus+, mCherry+ and non-fluorescent plaques where mCherry was targeted 488 

(with pX330-mC) and boxes below are the approximate percent of Venus+ plaques found 489 

when the control (pX330) plasmid was used.  (B) 293A monolayers were cotransfected with 490 

2 µg pU3.1kbF-Venus and the appropriate mass of either pX330 or pX330-mC so the ratio of 491 

these plasmids was 4:1, 2:1, 1:1 or 1:2, and infected with HSV-1 pCmC at an MOI of 0.01 5 492 

hours later.  Progeny of these transfection/infections was harvested at 72 hours and used to 493 

infect monolayers of Vero cells. The pie charts and boxes show data as for panel A, nd = not 494 

determined. Experiments in A and B were repeated with similar results. 495 

Figure 4. Use of UL26-UL27 intergenic region for insertion of foreign DNA into HSV. (A) 496 

Schematic representation of the HSV-1 genome with the location of UL26 and UL27 497 

indicated. (B) Detail of the insertion of the TdTomato expression cassette in the intergenic 498 

space between UL26 and UL27. (C) Map of pU26/7 pICP47/TdTom indicating the base pair 499 

positions of the UL26/UL27 flanking regions (in grey), using numbers from HSV-1 KOS 500 

(accession JQ673480), other features are as marked. (D) Multiple step growth analysis (MOI 501 
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0.01) in Vero cells comparing parent HSV-1 KOS (shown in black) and HSV-1 502 

pICP47/TdTom (shown in grey). Data are mean±SEM of three replicates. (E and F) Plaques 503 

of HSV-1 KOS and pICP47/TdTom on Vero cells under semi-solid media were similar. 504 

Morphology (E) is shown by phase contrast microscopy at 100× magnification (scale bar = 505 

150μm) and size (F) was measured for 30 plaques of each virus (mean size indicated by the 506 

black bar). (G) Amounts of infectious virus in the skin and innervating DRG of C57Bl/6 mice 507 

5 days after flank infection with HSV-1 KOS (black) and HSV-1 pICP47/TdTom (grey). 508 

Circles show results for each mouse (n=4) and bars represent mean±SEM. (ns = not 509 

significant). 510 

Figure S1. Pathogenesis of HSV in mice following flank infection by tattoo.  C57Bl/6 511 

mice were infected with 1 × 108 PFU/mL WT HSV-1 KOS by tattoo.  (A) Photographs of a 512 

representative mouse were taken at 1, 4, and 7 days after infection. (B) Estimation of total 513 

lesion size over time. Circles and bars represent mean±SEM (n=3).  514 

 515 
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Figure 1. Role of virus multiplicity and transfection efficiency on recombinant HSV generation by 
transfection/infection. (A) Map of pT pC_eGC indicating the base pair positions of the two flanking 
regions (in grey), using numbers from HSV-1 KOS (accession JQ673480), other features are as marked. 
(B) Effect of MOI on virus output of transfection/infections. 293A monolayers were  transfected with pT 
pC_eGC and infected at the MOIs shown 5 hours later. Progeny of these transfection/infections at 72 
hrs were used to infect monolayers of Vero cells, and the number of total (open bars) and eGFP+ (black 
bars) plaques counted. Results are representative of two experiments. (C and D) The effect of 
transfection efficiency was tested for linearized (C) and intact (D) plasmids. 293A were  transfected with 
pT pC_eGC to achieve a range of efficiencies and infected at an MOI of 0.01 5 hours later. Progeny of 
these transfection/infections were collected at 72 hours to determine the rate of recombinant virus 
generation. The proportion of eGFP+ plaques is plotted against the transfection efficiency as determined 
by flow cytometry.  
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Figure 2. Influence of flank sequence 
length on recombinant HSV generation 
by transfection/infection. (A) 
Representative map of plasmids with 
different lengths of UL3/UL4 flanking 
sequences. Four different lengths were 
used as depicted by the concentric grey 
boxes to generate plasmids pU3.0.5kbF 
(HSV-1 KOS 11200-12179), pU3.1kbF 
(HSV-1 KOS 10700-12722), pU3.2kbF 
(HSV-1 KOS 9803-13698) and pU3.3kbF 
(HSV-1 KOS 8689-14663). Other features 
are as marked. (B) 293A monolayers 
were  transfected with the each of the 
plasmids shown in (A) and infected at an 
MOI of 0.01 5 hours later. Progeny of 
these transfection/infections was 
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Figure 3. Targeting the site of insertion using CRISPR-Cas9 has an overriding effect 
on recombination frequency. (A) 293A monolayers were cotransfected with 2 µg of one 
of the plasmids shown in Fig. 2A and either pX330 or pX330-mC in a 1:1 ratio, and 
infected with HSV-1 pCmC at an MOI of 0.01 5 hours later.  Progeny of  these 
transfection/infections was harvested at 72 hours and used to infect monolayers of Vero 
cells.  Pie charts show the percentage of Venus+, mCherry+ and non-fluorescent plaques 
where mCherry was targeted (with pX330-mC) and boxes below are the approximate 
percent of Venus+ plaques found when the control (pX330) plasmid was used.  (B) 293A 
monolayers were cotransfected with 2 µg pU3.1kbF-Venus and the appropriate mass of 
either pX330 or pX330-mC so the ratio of these plasmids was 4:1, 2:1, 1:1 or 1:2, and 
infected with HSV-1 pCmC at an MOI of 0.01 5 hours later.  Progeny of these 
transfection/infections was harvested at 72 hours and used to infect monolayers of Vero 
cells. The pie charts and boxes show data as for panel A, nd = not determined. 
Experiments in A and B were repeated with similar results. 
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Figure 4. Use of UL26-UL27 intergenic region for insertion of foreign DNA into HSV. (A) Schematic 
representation of the HSV-1 genome with the location of UL26 and UL27 indicated. (B) Detail of the 
insertion of the TdTomato expression cassette in the intergenic space between UL26 and UL27. (C) Map of 
pU26/7 pICP47/TdTom indicating the base pair positions of the UL26/UL27 flanking regions (in grey), using 
numbers from HSV-1 KOS (accession JQ673480), other features are as marked. (D) Multiple step growth 
analysis (MOI 0.01) in Vero cells comparing parent HSV-1 KOS (shown in black) and HSV-1 
pICP47/TdTom (shown in grey). Data are mean±SEM of three replicates. (E and F) Plaques of HSV-1 KOS 
and pICP47/TdTom on Vero cells under semi-solid media were similar. Morphology (E) is shown by phase 
contrast microscopy at 100× magnification (scale bar = 150μm) and size (F) was measured for 30 plaques 
of each virus (mean size indicated by the black bar). (G) Amounts of infectious virus in the skin and 
innervating DRG of C57Bl/6 mice 5 days after flank infection with HSV-1 KOS (black) and HSV-1 
pICP47/TdTom (grey). Circles show results for each mouse (n=4) and bars represent mean±SEM. (ns = not 
significant).  
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Figure S1. Pathogenesis of HSV in mice following flank infection by tattoo.  C57Bl/6 mice were 
infected with 1 x 108 PFU/mL WT HSV-1 KOS by tattoo.  (A) Photographs of a representative mouse 
were taken at 1, 4, and 7 days after infection. (B) Estimation of total lesion size over time. Circles and 
bars represent mean±SEM (n=3).  
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