Understanding the Role of (W, Mo, Sb) Dopants in the Catalyst Evolution and Activity Enhancement of Co3O4 during Water Electrolysis via In Situ Spectroelectrochemical Techniques
Date
2023
Authors
Tran, Phu Thanh
Chatti, Manjunath
Leverett, Joshua
Nguyen, Thi Kelly
Simondson, Darcy
Hoogeveen, Dijon A.
Kiy, Alexander
Duong, The
Johannessen, B
Meilak, Jaydon
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-VCH Verlag GMBH
Abstract
Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3O4) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3O4 electrode requires ≈390 and ≈560�mV overpotentials to reach �10 and �100�mA cm−2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g−1 at overpotentials of 0.67 and 0.45�V, respectively. These novel insights provide directions for the effective engineering of Co3O4 as a low-cost material for green hydrogen electrocatalysis at large scales.
Description
Keywords
Citation
Collections
Source
Small
Type
Journal article
Book Title
Entity type
Access Statement
Open Access
License Rights
Creative Commons Attribution licence