Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors

Date

2020

Authors

Krishnamurthi, Vaishnavi
Khan, Hareem
Ahmed, Taimur
Zavabeti, Ali
Tawfik, Sherif Abdulkader
Jain, Shubhendra Kumar
Spencer, Michelle J. S.
Balendhran, Sivacarendran
Crozier, Kenneth
Li, Ziyuan

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (≈1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280-850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W−1 ) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging.

Description

Keywords

Citation

Source

Advanced Materials

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2099-12-31