Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone

Date

2015

Authors

Whitney, Spencer
Birch, Rosemary
Kelso, Celine
Beck, Jennifer
Kapralov, Maxim

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences (USA)

Abstract

Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tobAtL plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tobAtL-R1 plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tobAtL-R1 and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8 AS8 t Rubisco [comprising AtL and tobacco small (S) subunits] in tobAtL-R1 leaves compared with tobAtL, despite >threefold lower steady-state Rubisco mRNA levels in tobAtL-R1. Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tobAtL-R1 lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants.

Description

Keywords

Citation

Source

PNAS - Proceedings of the National Academy of Sciences of the United States of America

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

DOI

10.1073/pnas.1420536112

Restricted until