Granular compaction and the topology of pore deformation

Date

2017

Authors

Saadatfar, Mohammad
Takeuchi, H.
Hanifpour, Maryam
Robins, Vanessa
Francois, Nicolas
Hiraoka, Y.

Journal Title

Journal ISSN

Volume Title

Publisher

EPJ Web of Conferences

Abstract

The mechanism of crystallisation in highly dissipative materials such as foams or granular materials is still widely unknown. In macroscopic granular materials high levels of energy need to be injected to overcome the natural propensity of these dissipative materials to form amorphous structures [1, 2]. The transition from disordered to ordered packings in such systems triggers a wide range of geometrical, topological and mechanical changes at multi length scales [3]. Formation of cavities and patterns by aggregates of grains and their evolution during this transition requires a complete topological description of the system. Here, crystallisation of three-dimensional packings of frictional spheres is studied at the grain scale with x-ray tomography. Using a novel and powerful topological tool, Persistent Homology, we describe the complete formation process of perfect tetrahedral and octahedral patterns: the two building blocks of FCC and HCP crystalline arrangements. Additionally we present possible and allowable deformations of these components that accurately reproduce the main topological features of the system. These results give new insights into the crystallisation of these highly dissipative materials.

Description

Keywords

Citation

Source

Type

Conference paper

Book Title

Entity type

Access Statement

License Rights

DOI

10.1051/epjconf/201714016009

Restricted until