Non-random nature of spontaneous mIPSCs in mouse auditory brainstem neurons revealed by recurrence quantification analysis
Date
2005
Authors
Leao, Richardson
Leao, Fabricio N
Walmsley, Bruce
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of London
Abstract
A change in the spontaneous release of neurotransmitter is a useful indicator of processes occurring within presynaptic terminals. Linear techniques (e.g. Fourier transform) have been used to analyse spontaneous synaptic events in previous studies, but such methods are inappropriate if the timing pattern is complex. We have investigated spontaneous glycinergic miniature synaptic currents (mIPSCs) in principal cells of the medial nucleus of the trapezoid body. The random versus deterministic (or periodic) nature of mIPSCs was assessed using recurrence quantification analysis. Nonlinear methods were then used to quantify any detected determinism in spontaneous release, and to test for chaotic or fractal patterns. Modelling demonstrated that this procedure is much more sensitive in detecting periodicities than conventional techniques. mIPSCs were found to exhibit periodicities that were abolished by blockade of internal calcium stores with ryanodine, suggesting calcium oscillations in the presynaptic inhibitory terminals. Analysis indicated that mIPSC occurrences were chaotic in nature. Furthermore, periodicities were less evident in congenitally deaf mice than in normal mice, indicating that appropriate neural activity during development is necessary for the expression of deterministic chaos in mIPSC patterns. We suggest that chaotic oscillations of mIPSC occurrences play a physiological role in signal processing in the auditory brainstem.
Description
Keywords
Keywords: ryanodine; neurology; animal tissue; article; brain stem; calcium transport; cell nucleus; controlled study; Fourier transformation; hearing; hearing impairment; mouse; nerve cell; neurotransmission; nonhuman; oscillation; periodicity; presynaptic nerve; Auditory; Brainstem; Glycine; Recurrence quantification analysis; Spontaneous neurotransmitter release
Citation
Collections
Source
Proceedings of the Royal Society of London Series B: Biological Sciences
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31
Downloads
File
Description