Convergent evolution of a vertebrate-like methylome in a marine sponge

Date

2019-09-26

Authors

de Mendoza, Alex
Hatleberg , William L.
Pang, Kevin
Leininger, Sven
Bogdanovic, Ozren
Pflueger, Jahnvi
Buckberry , Sam
Technau , Ulrich
Hejnol , Andreas
Adamska, Maja

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group

Abstract

Vertebrates have highly methylated genomes at CpG positions, whereas invertebrates have sparsely methylated genomes. This increase in methylation content is considered a major regulatory innovation of vertebrate genomes. However, here we report that a sponge, proposed as the potential sister group to the rest of animals, has a highly methylated genome. Despite major differences in genome size and architecture, we find similarities between the independent acquisitions of the hypermethylated state. Both lineages show genome-wide CpG depletion, conserved strong transcription factor methyl-sensitivity and developmental methylation dynamics at 5-hydroxymethylcytosine enriched regions. Together, our findings trace back patterns associated with DNA methylation in vertebrates to the early steps of animal evolution. Thus, the sponge methylome challenges previous hypotheses concerning the uniqueness of vertebrate genome hypermethylation and its implications for regulatory complexity.

Description

Keywords

Citation

Source

Nature Ecology & Evolution

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31