How Accurately Should We Model Ice Shelf Melt Rates?

Date

2019

Authors

Goldberg, Daniel
Gourmelen, Noel
Kimura, S.
Millan, R.
Snow, Kate

Journal Title

Journal ISSN

Volume Title

Publisher

American Geophysical Union

Abstract

Assessment of ocean‐forced ice sheet loss requires that ocean models be able to represent sub‐ice shelf melt rates. However, spatial accuracy of modeled melt is not well investigated, and neither is the level of accuracy required to assess ice sheet loss. Focusing on a fast‐thinning region of West Antarctica, we calculate spatially resolved ice‐shelf melt from satellite altimetry and compare against results from an ocean model with varying representations of cavity geometry and ocean physics. Then, we use an ice‐flow model to assess the impact of the results on grounded ice. We find that a number of factors influence model‐data agreement of melt rates, with bathymetry being the leading factor; but this agreement is only important in isolated regions under the ice shelves, such as shear margins and grounding lines. To improve ice sheet forecasts, both modeling and observations of ice‐ocean interactions must be improved in these critical regions.

Description

Keywords

Citation

Source

Geophysical Research Letters

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution License

DOI

10.1029/2018GL080383

Restricted until