Nonparametric methods for inference in the presence of instrumental variables
dc.contributor.author | Hall, Peter | |
dc.contributor.author | Horowitz, Joel L. | |
dc.date.accessioned | 2015-09-11T04:58:29Z | |
dc.date.available | 2015-09-11T04:58:29Z | |
dc.date.issued | 2006-03-06 | |
dc.date.updated | 2016-02-24T09:59:36Z | |
dc.description.abstract | We suggest two nonparametric approaches, based on kernel methods and orthogonal series to estimating regression functions in the presence of instrumental variables. For the first time in this class of problems, we derive optimal convergence rates, and show that they are attained by particular estimators. In the presence of instrumental variables the relation that identifies the regression function also defines an ill-posed inverse problem, the ``difficulty'' of which depends on eigenvalues of a certain integral operator which is determined by the joint density of endogenous and instrumental variables. We delineate the role played by problem difficulty in determining both the optimal convergence rate and the appropriate choice of smoothing parameter. | |
dc.description.sponsorship | Supported in part by NSF Grants SES-99-10925 and SES-03-52675. | en_AU |
dc.identifier.issn | 0090-5364 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/15343 | |
dc.publisher | Institute of Mathematical Statistics | |
dc.rights | © Institute of Mathematical Statistics, 2005. Author can archive pdf http://www.sherpa.ac.uk/romeo/issn/0090-5364/ as at 11/9/15 | |
dc.source | Annals of Statistics 2005, Vol. 33, No. 6, 2904-2929 | |
dc.subject | nonparametric regression | |
dc.subject | kernel methods | |
dc.subject | inference | |
dc.subject | instrumental variables | |
dc.subject | bandwidth | |
dc.subject | convergence rate | |
dc.subject | linear operator | |
dc.subject | smoothing | |
dc.subject | optimality | |
dc.title | Nonparametric methods for inference in the presence of instrumental variables | |
dc.type | Journal article | |
local.bibliographicCitation.issue | 6 | en_AU |
local.bibliographicCitation.lastpage | 2929 | en_AU |
local.bibliographicCitation.startpage | 2904 | en_AU |
local.contributor.affiliation | Hall, Peter, The Australian National University | en_AU |
local.contributor.authoruid | Hall, Peter, u7801145 | |
local.identifier.absfor | 010404 - Probability Theory | |
local.identifier.ariespublication | u3488905xPUB14 | |
local.identifier.citationvolume | 33 | en_AU |
local.identifier.doi | 10.1214/009053605000000714 | en_AU |
local.identifier.scopusID | 2-s2.0-33644907163 | |
local.identifier.uidSubmittedBy | u5437951 | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- Hall and Horowitz Nonparametric methods 2005.pdf
- Size:
- 257.35 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 884 B
- Format:
- Item-specific license agreed upon to submission
- Description: