Fractal Tilings from Iterated Function Systems

dc.contributor.authorBarnsley, Michael
dc.contributor.authorvince, Andrew
dc.date.accessioned2015-12-13T22:15:34Z
dc.date.available2015-12-13T22:15:34Z
dc.date.issued2014
dc.date.updated2015-12-11T07:18:28Z
dc.description.abstractA simple, yet unifying method is provided for the construction of tilings by tiles obtained from the attractor of an iterated function system (IFS). Many examples appearing in the literature in ad hoc ways, as well as new examples, can be constructed by this method. These tilings can be used to extend a fractal transformation defined on the attractor of a contractive IFS to a fractal transformation on the entire space upon which the IFS acts.
dc.identifier.issn0179-5376
dc.identifier.urihttp://hdl.handle.net/1885/70468
dc.publisherSpringer
dc.sourceDiscrete and Computational Geometry
dc.titleFractal Tilings from Iterated Function Systems
dc.typeJournal article
local.bibliographicCitation.issue3
local.bibliographicCitation.lastpage752
local.bibliographicCitation.startpage729
local.contributor.affiliationBarnsley, Michael, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationvince, Andrew, University of Florida
local.contributor.authoremailu4138881@anu.edu.au
local.contributor.authoruidBarnsley, Michael, u4138881
local.description.notesImported from ARIES
local.identifier.absfor010104 - Combinatorics and Discrete Mathematics (excl. Physical Combinatorics)
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
local.identifier.ariespublicationU3488905xPUB2320
local.identifier.citationvolume51
local.identifier.doi10.1007/s00454-014-9589-2
local.identifier.scopusID2-s2.0-84899936274
local.identifier.thomsonID000335753000014
local.identifier.uidSubmittedByU3488905
local.type.statusPublished Version

Downloads