Impact of perovskite solar cell degradation on the lifetime energy yield and economic viability of perovskite/silicon tandem modules
dc.contributor.author | Qian, Jiadong | |
dc.contributor.author | Ernst, Marco | |
dc.contributor.author | Wu, Nandi | |
dc.contributor.author | Blakers, Andrew | |
dc.date.accessioned | 2020-02-12T03:52:02Z | |
dc.date.issued | 2019-04-23 | |
dc.date.updated | 2019-11-25T07:32:41Z | |
dc.description.abstract | With continuously increasing power conversion efficiency, metal halide perovskite solar cells have emerged as promising candidates for high-efficiency silicon based tandem solar cells in two-terminal monolithic integration and four-terminal mechanical stack architectures. The stability of perovskite solar cells is currently one of the major challenges for perovskite/silicon tandem devices and is improving rapidly. However, different degradation rates of perovskite cells and silicon cells in a tandem solar module can affect the overall module degradation. The lifetime energy yield and economic viability of perovskite/silicon tandem modules strongly depend on the degradation rates of perovskite cells. In this paper we present a simulation study of the long term power and energy yield of perovskite/silicon tandem modules under different perovskite cell degradation scenarios. We also estimate the efficiency and cost requirements for the economic feasibility of two- and four-terminal tandem modules. We determine that to maintain 80% of the initial power in a tandem module after 25 years, the maximum permissible perovskite top cell degradation rates are 0.9% per year in a two-terminal configuration and 1.3% per year in a four-terminal configuration for a realistic perovskite cell degradation scenario. We project that a future perovskite/silicon tandem module can produce over 10% more lifetime energy than a single-junction silicon module in 2025 assuming a tandem cell efficiency reaches of 28% and a modest perovskite cell degradation rate of 2% per year. Finally, we estimate the levelized cost of energy for both two- and four-terminal tandem modules. In the case of a degradation rate of 2% per year of the perovskite cell and 50% additional cost for the tandem structure compared to single-junction modules, we find that power conversion efficiencies of 28.7% and 27.6% enable the economic viability of two- and four-terminal perovskite/silicon tandem modules. Our study demonstrates the quantitative impact of perovskite cell degradation on the long-term performance of silicon based tandem modules, and will provide guidance for future commercialization of perovskite/silicon tandem solar modules. | en_AU |
dc.format.extent | 9 pages | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/201667 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | Royal Society of Chemistry | en_AU |
dc.rights | © The Royal Society of Chemistry 2019 | en_AU |
dc.source | Sustainable Energy & Fuels | en_AU |
dc.title | Impact of perovskite solar cell degradation on the lifetime energy yield and economic viability of perovskite/silicon tandem modules | en_AU |
dc.type | Journal article | en_AU |
dcterms.dateAccepted | 2019-04-11 | |
local.bibliographicCitation.issue | 6 | en_AU |
local.bibliographicCitation.lastpage | 1447 | en_AU |
local.bibliographicCitation.startpage | 1439 | en_AU |
local.contributor.affiliation | Qian, Jiadong (Harry), College of Engineering and Computer Science, The Australian National University | en_AU |
local.contributor.affiliation | Ernst, Marco, College of Engineering and Computer Science, The Australian National University | en_AU |
local.contributor.affiliation | Wu, Nandi, College of Engineering and Computer Science, The Australian National University | en_AU |
local.contributor.affiliation | Blakers, Andrew, College of Engineering and Computer Science, The Australian National University | en_AU |
local.contributor.authoremail | u5457130@anu.edu.au | en_AU |
local.contributor.authoruid | Qian, Jiadong (Harry), u4762908 | en_AU |
local.contributor.authoruid | Ernst, Marco, u5457130 | en_AU |
local.contributor.authoruid | Wu, Nandi, u5168063 | en_AU |
local.contributor.authoruid | Blakers, Andrew, u9113453 | en_AU |
local.description.embargo | 2037-12-31 | |
local.description.notes | Imported from ARIES | en_AU |
local.identifier.absfor | 090607 - Power and Energy Systems Engineering (excl. Renewable Power) | en_AU |
local.identifier.absseo | 850504 - Solar-Photovoltaic Energy | en_AU |
local.identifier.ariespublication | u3102795xPUB1892 | en_AU |
local.identifier.citationvolume | 3 | en_AU |
local.identifier.doi | 10.1039/c9se00143c | en_AU |
local.identifier.essn | 2398-4902 | en_AU |
local.identifier.thomsonID | 4.69259E+11 | |
local.identifier.uidSubmittedBy | u3102795 | en_AU |
local.publisher.url | https://www.rsc.org/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 01_Qian_Impact_of_perovskite_solar_2019.pdf
- Size:
- 1.11 MB
- Format:
- Adobe Portable Document Format