Impact of perovskite solar cell degradation on the lifetime energy yield and economic viability of perovskite/silicon tandem modules

dc.contributor.authorQian, Jiadong
dc.contributor.authorErnst, Marco
dc.contributor.authorWu, Nandi
dc.contributor.authorBlakers, Andrew
dc.date.accessioned2020-02-12T03:52:02Z
dc.date.issued2019-04-23
dc.date.updated2019-11-25T07:32:41Z
dc.description.abstractWith continuously increasing power conversion efficiency, metal halide perovskite solar cells have emerged as promising candidates for high-efficiency silicon based tandem solar cells in two-terminal monolithic integration and four-terminal mechanical stack architectures. The stability of perovskite solar cells is currently one of the major challenges for perovskite/silicon tandem devices and is improving rapidly. However, different degradation rates of perovskite cells and silicon cells in a tandem solar module can affect the overall module degradation. The lifetime energy yield and economic viability of perovskite/silicon tandem modules strongly depend on the degradation rates of perovskite cells. In this paper we present a simulation study of the long term power and energy yield of perovskite/silicon tandem modules under different perovskite cell degradation scenarios. We also estimate the efficiency and cost requirements for the economic feasibility of two- and four-terminal tandem modules. We determine that to maintain 80% of the initial power in a tandem module after 25 years, the maximum permissible perovskite top cell degradation rates are 0.9% per year in a two-terminal configuration and 1.3% per year in a four-terminal configuration for a realistic perovskite cell degradation scenario. We project that a future perovskite/silicon tandem module can produce over 10% more lifetime energy than a single-junction silicon module in 2025 assuming a tandem cell efficiency reaches of 28% and a modest perovskite cell degradation rate of 2% per year. Finally, we estimate the levelized cost of energy for both two- and four-terminal tandem modules. In the case of a degradation rate of 2% per year of the perovskite cell and 50% additional cost for the tandem structure compared to single-junction modules, we find that power conversion efficiencies of 28.7% and 27.6% enable the economic viability of two- and four-terminal perovskite/silicon tandem modules. Our study demonstrates the quantitative impact of perovskite cell degradation on the long-term performance of silicon based tandem modules, and will provide guidance for future commercialization of perovskite/silicon tandem solar modules.en_AU
dc.format.extent9 pagesen_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.urihttp://hdl.handle.net/1885/201667
dc.language.isoen_AUen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.rights© The Royal Society of Chemistry 2019en_AU
dc.sourceSustainable Energy & Fuelsen_AU
dc.titleImpact of perovskite solar cell degradation on the lifetime energy yield and economic viability of perovskite/silicon tandem modulesen_AU
dc.typeJournal articleen_AU
dcterms.dateAccepted2019-04-11
local.bibliographicCitation.issue6en_AU
local.bibliographicCitation.lastpage1447en_AU
local.bibliographicCitation.startpage1439en_AU
local.contributor.affiliationQian, Jiadong (Harry), College of Engineering and Computer Science, The Australian National Universityen_AU
local.contributor.affiliationErnst, Marco, College of Engineering and Computer Science, The Australian National Universityen_AU
local.contributor.affiliationWu, Nandi, College of Engineering and Computer Science, The Australian National Universityen_AU
local.contributor.affiliationBlakers, Andrew, College of Engineering and Computer Science, The Australian National Universityen_AU
local.contributor.authoremailu5457130@anu.edu.auen_AU
local.contributor.authoruidQian, Jiadong (Harry), u4762908en_AU
local.contributor.authoruidErnst, Marco, u5457130en_AU
local.contributor.authoruidWu, Nandi, u5168063en_AU
local.contributor.authoruidBlakers, Andrew, u9113453en_AU
local.description.embargo2037-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor090607 - Power and Energy Systems Engineering (excl. Renewable Power)en_AU
local.identifier.absseo850504 - Solar-Photovoltaic Energyen_AU
local.identifier.ariespublicationu3102795xPUB1892en_AU
local.identifier.citationvolume3en_AU
local.identifier.doi10.1039/c9se00143cen_AU
local.identifier.essn2398-4902en_AU
local.identifier.thomsonID4.69259E+11
local.identifier.uidSubmittedByu3102795en_AU
local.publisher.urlhttps://www.rsc.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Qian_Impact_of_perovskite_solar_2019.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format