Detection and characterization of Intrinsic symmetry of 3D shapes

dc.contributor.authorMukhopadhyay, Anirban
dc.contributor.authorBhandarkar, Suchendra M.
dc.contributor.authorPorikli, Fatih
dc.coverage.spatialCancun Center, Cancun; Mexico
dc.date.accessioned2021-06-04T06:36:42Z
dc.date.createdDecember 4-8 2016
dc.date.issued2017
dc.date.updated2020-11-23T10:24:49Z
dc.description.abstractA comprehensive framework for detection and characterization of partial intrinsic symmetry over 3D shapes is proposed. To identify prominent symmetric regions which overlap in space and vary in form, the proposed framework is decoupled into a Correspondence Space Voting (CSV) procedure followed by a Transformation Space Mapping (TSM) procedure. In the CSV procedure, significant symmetries are first detected by identifying surface point pairs on the input shape that exhibit local similarity in terms of their intrinsic geometry while simultaneously maintaining an intrinsic distance structure at a global level. To allow detection of potentially overlapping symmetric shape regions, a global intrinsic distance-based voting scheme is employed to ensure the inclusion of only those point pairs that exhibit significant intrinsic symmetry. In the TSM procedure, the Functional Map framework is employed to generate the final map of symmetries between point pairs. The TSM procedure ensures the retrieval of the underlying dense correspondence map throughout the 3D shape that follows a particular symmetry. The TSM procedure is also shown to result in the formulation of a metric symmetry space where each point in the space represents a specific symmetry transformation and the distance between points represents the complexity between the corresponding transformations. Experimental results show that the proposed framework can successfully analyze complex 3D shapes that possess rich symmetriesen_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9781509048472en_AU
dc.identifier.urihttp://hdl.handle.net/1885/236771
dc.language.isoen_AUen_AU
dc.publisherIEEEen_AU
dc.relation.ispartofProceedings - 23rd International Conference on Pattern Recognitionen_AU
dc.relation.ispartofseriesInternational Conference on Pattern Recognition, ICPR 2016en_AU
dc.rights© 2016 IEEEen_AU
dc.titleDetection and characterization of Intrinsic symmetry of 3D shapesen_AU
dc.typeConference paperen_AU
local.bibliographicCitation.lastpage1820en_AU
local.bibliographicCitation.startpage1815en_AU
local.contributor.affiliationMukhopadhyay, Anirban, Zuse Instituteen_AU
local.contributor.affiliationBhandarkar, Suchendra M., The University of Georgiaen_AU
local.contributor.affiliationPorikli, Fatih, College of Engineering and Computer Science, ANUen_AU
local.contributor.authoremailu5405232@anu.edu.auen_AU
local.contributor.authoruidPorikli, Fatih, u5405232en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor080104 - Computer Visionen_AU
local.identifier.absfor080103 - Computer Graphicsen_AU
local.identifier.ariespublicationa383154xPUB6093en_AU
local.identifier.doi10.1109/ICPR.2016.7899900en_AU
local.identifier.scopusID2-s2.0-85019083473
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://www.ieee.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Mukhopadhyay_Detection_and_characterization_2017.pdf
Size:
948.35 KB
Format:
Adobe Portable Document Format