Anomalies of Dirac Type Operators on Euclidean Space

Date

Authors

Carey, Alan
Grosse, Harald
Kaad, Jens

Journal Title

Journal ISSN

Volume Title

Publisher

Harwood Academic Publishers

Abstract

We develop by example a type of index theory for non-Fredholm operators. A general framework using cyclic homology for this notion of index was introduced in a separate article (Carev and Kaad, Topological invariance of the homological index. arXiv:1402.0475 [math.KT], 2014) where it may be seen to generalise earlier ideas of Carey–Pincus and Gesztesy–Simon on this problem. Motivated by an example in two dimensions in Bollé et al. (J Math Phys 28:1512–1525, 1987) we introduce in this paper a class of examples of Dirac type operators on R2n that provide non-trivial examples of our homological approach. Our examples may be seen as extending old ideas about the notion of anomaly introduced by physicists to handle topological terms in quantum action principles, with an important difference, namely, we are dealing with purely geometric data that can be seen to arise from the continuous spectrum of our Dirac type operators.

Description

Keywords

Citation

Source

Communications in Mathematical Physics

Book Title

Entity type

Access Statement

License Rights

Restricted until