Theory-guided construction of electron-deficient sites via removal of lattice oxygen for the boosted electrocatalytic synthesis of ammonia

Date

Authors

Zhang, Li
Jiao, Shilong
Tan, Xin
Yuan, Yuliang
Xiang, Yu
Zeng, Yu-Jia
Qiu, Jingyi
Peng, Ping
Smith, Sean
Huang, Hongwen

Journal Title

Journal ISSN

Volume Title

Publisher

Tsinghua Univ Press

Abstract

Rational design of catalytic sites to activate the inert N=N bond is of paramount importance to advance N2 electroreduction. Here, guided by the theoretical predictions, we construct a NiFe layered double hydroxide (NiFe-LDH) nanosheet catalyst with a high density of electron-deficient sites, which were achieved by introducing oxygen vacancies in NiFe-LDH. Density functional theory calculations indicate that the electron-deficient sites show a much lower energy barrier (0.76 eV) for the potential determining step compared with that of the pristine NiFe-LDH (2.02 eV). Benefiting from this, the NiFe-LDH with oxygen vacancies exhibits the greatly improved electrocatalytic activity, presenting a high NH3 yield rate of 19.44 μg.h−1.mgcat−1, Faradaic efficiency of 19.41% at −0.20 V vs. reversible hydrogen electrode (RHE) in 0.1 M KOH electrolyte, as well as the outstanding stability. The present work not only provides an active electrocatalyst toward N2 reduction but also offers a facile strategy to boost the N2 reduction.

Description

Citation

Source

Nano Research

Book Title

Entity type

Access Statement

License Rights

Restricted until

2099-12-31

Downloads