Quantifying Quasi-Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenides

dc.contributor.authorTebyetekerwa, Mike
dc.contributor.authorZhang, Jian (Andrew)
dc.contributor.authorLiang, Kun
dc.contributor.authorDuong, The
dc.contributor.authorNeupane, Guru
dc.contributor.authorZhang, Linglong
dc.contributor.authorLiu, Boqing
dc.contributor.authorTruong, Thien
dc.contributor.authorBasnet, Rabin
dc.contributor.authorQiao, Xiaojing
dc.contributor.authorYin, Zongyou
dc.contributor.authorLu, Yuerui
dc.contributor.authorMacdonald, Daniel
dc.contributor.authorNguyen, Hieu
dc.date.accessioned2020-09-16T03:48:07Z
dc.date.issued2019
dc.date.updated2020-06-23T00:54:00Z
dc.description.abstractOne of the most fundamental parameters of any photovoltaic material is its quasi‐Fermi level splitting (∆µ) under illumination. This quantity represents the maximum open‐circuit voltage (Voc) that a solar cell fabricated from that material can achieve. Herein, a contactless, nondestructive method to quantify this parameter for atomically thin 2D transition metal dichalcogenides (TMDs) is reported. The technique is applied to quantify the upper limits of Voc that can possibly be achieved from monolayer WS2, MoS2, WSe2, and MoSe2‐based solar cells, and they are compared with state‐of‐the‐art perovskites. These results show that Voc values of ≈1.4, ≈1.12, ≈1.06, and ≈0.93 V can be potentially achieved from solar cells fabricated from WS2, MoS2, WSe2, and MoSe2 monolayers at 1 Sun illumination, respectively. It is also observed that ∆µ is inhomogeneous across different regions of these monolayers. Moreover, it is attempted to engineer the observed ∆µ heterogeneity by electrically gating the TMD monolayers in a metal‐oxide‐semiconductor structure that effectively changes the doping level of the monolayers electrostatically and improves their ∆µ heterogeneity. The values of ∆µ determined from this work reveal the potential of atomically thin TMDs for high‐voltage, ultralight, flexible, and eye‐transparent future solar cells.en_AU
dc.description.sponsorshipThis work was supported by the Australian Renewable Energy Agency (ARENA) through Research Grant RND017. The authors acknowledge the facilities and technical support from the Australian National Fabrication Facility (ANFF), ACT Node, and the Australian Microscopy & Microanalysis Research Facility at the Centre of Advanced Microscopy and at the Australian National University. M.T. acknowledges the research support of the Australian Government Research Training Program (RTP) Scholarship. H.T.N. acknowledges the fellowship support from the Australian Centre for Advanced Photovoltaics (ACAP). K.L. and X.J.Q. acknowledge the support from the International Graduate Exchange Program of the Beijing Institute of Technology.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0935-9648en_AU
dc.identifier.urihttp://hdl.handle.net/1885/210517
dc.language.isoen_AUen_AU
dc.publisherWileyen_AU
dc.rights© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_AU
dc.sourceAdvanced Materialsen_AU
dc.titleQuantifying Quasi-Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenidesen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue25en_AU
local.bibliographicCitation.lastpage8en_AU
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationTebyetekerwa, Mike, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationZhang, Jian (Andrew), College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationLiang, Kun, Beijing Institute of Technologyen_AU
local.contributor.affiliationDuong, The, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationNeupane, Guru, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationZhang, Linglong, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationLiu, Boqing, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationTruong, Thien, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationBasnet, Rabin, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationQiao, Xiaojing, Beijing Institute of Technologyen_AU
local.contributor.affiliationYin, Zongyou, College of Science, ANUen_AU
local.contributor.affiliationLu, Yuerui, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationMacDonald, Daniel, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationNguyen, Hieu, College of Engineering and Computer Science, ANUen_AU
local.contributor.authoremailu1035740@anu.edu.auen_AU
local.contributor.authoruidTebyetekerwa, Mike, u6708414en_AU
local.contributor.authoruidZhang, Jian (Andrew), u3330519en_AU
local.contributor.authoruidDuong, The, u5447192en_AU
local.contributor.authoruidNeupane, Guru, u1052479en_AU
local.contributor.authoruidZhang, Linglong, t1794en_AU
local.contributor.authoruidLiu, Boqing, u4815787en_AU
local.contributor.authoruidTruong, Thien, u6709745en_AU
local.contributor.authoruidBasnet, Rabin, u6093379en_AU
local.contributor.authoruidYin, Zongyou, u1035740en_AU
local.contributor.authoruidLu, Yuerui, u5342720en_AU
local.contributor.authoruidMacDonald, Daniel, u9718154en_AU
local.contributor.authoruidNguyen, Hieu, u5247402en_AU
local.description.embargo2037-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor030306 - Synthesis of Materialsen_AU
local.identifier.absseo850599 - Renewable Energy not elsewhere classifieden_AU
local.identifier.ariespublicationu3102795xPUB3372en_AU
local.identifier.citationvolume31en_AU
local.identifier.doi10.1002/adma.201900522en_AU
local.identifier.scopusID2-s2.0-85065473577
local.identifier.uidSubmittedByu3102795en_AU
local.publisher.urlhttps://www.wiley.com/en-gben_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Tebyetekerwa_Quantifying_Quasi-Fermi_Level_2019.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format