Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers

dc.contributor.authorGoldman, M L
dc.contributor.authorSipahigil, Alp
dc.contributor.authorDoherty, Marcus
dc.contributor.authorYao, N Y
dc.contributor.authorBennett, S D
dc.contributor.authorMarkham, M.
dc.contributor.authorTwitchen, D J
dc.contributor.authorManson, Neil
dc.contributor.authorKubanek, A
dc.contributor.authorLukin, Mikhail D
dc.date.accessioned2018-11-29T22:53:09Z
dc.date.available2018-11-29T22:53:09Z
dc.date.issued2015
dc.date.updated2018-11-29T07:51:13Z
dc.description.abstractWe report direct measurement of population dynamics in the excited state manifold of a nitrogen-vacancy (NV) center in diamond. We quantify the phonon-induced mixing rate and demonstrate that it can be completely suppressed at low temperatures. Further, we measure the intersystem crossing (ISC) rate for different excited states and develop a theoretical model that unifies the phonon-induced mixing and ISC mechanisms. We find that our model is in excellent agreement with experiment and that it can be used to predict unknown elements of the NV center's electronic structure. We discuss the model's implications for enhancing the NV center's performance as a room-temperature sensor.
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0031-9007
dc.identifier.urihttp://hdl.handle.net/1885/152395
dc.publisherAmerican Physical Society
dc.sourcePhysical Review Letters
dc.subjectKeywords: Electronic structure; Mixing; Nitrogen; Phonons; Population dynamics; Direct measurement; Inter-system crossings; Intersystem crossing; Low temperatures; Mixing rates; Nitrogen vacancies; Nitrogen-vacancy center; Theoretical modeling; Excited states
dc.titlePhonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers
dc.typeJournal article
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue14
local.contributor.affiliationGoldman, M L, Harvard University
local.contributor.affiliationSipahigil, Alp, Harvard University
local.contributor.affiliationDoherty, Marcus, College of Science, ANU
local.contributor.affiliationYao, N Y, Harvard University
local.contributor.affiliationBennett, S D, Harvard University
local.contributor.affiliationMarkham, M., Element Six Ltd.
local.contributor.affiliationTwitchen, D J, Element Six Ltd.
local.contributor.affiliationManson, Neil, College of Science, ANU
local.contributor.affiliationKubanek, A, Harvard University
local.contributor.affiliationLukin, Mikhail D, Harvard University
local.contributor.authoremailu3354432@anu.edu.au
local.contributor.authoruidDoherty, Marcus, u3354432
local.contributor.authoruidManson, Neil, u7300217
local.description.notesImported from ARIES
local.identifier.absfor020500 - OPTICAL PHYSICS
local.identifier.absfor020603 - Quantum Information, Computation and Communication
local.identifier.absfor100710 - Nanometrology
local.identifier.ariespublicationa383154xPUB2147
local.identifier.citationvolume114
local.identifier.doi10.1103/PhysRevLett.114.145502
local.identifier.scopusID2-s2.0-84929214778
local.identifier.thomsonID000352350000011
local.identifier.uidSubmittedBya383154
local.type.statusPublished Version

Downloads