CycAs: Self-supervised Cycle Association for Learning Re-identifiable Descriptions
Date
2020
Authors
Wang, Zhongdao
Zhang, Jingwei
Zheng, Liang
Liu, Yixuan
Sun, Yifan
Li, Yali
Wang, Shengjin
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
This paper proposes a self-supervised learning method for the person re-identification (re-ID) problem, where existing unsupervised methods usually rely on pseudo labels, such as those from video tracklets or clustering. A potential drawback of using pseudo labels is that errors may accumulate and it is challenging to estimate the number of pseudo IDs. We introduce a different unsupervised method that allows us to learn pedestrian embeddings from raw videos, without resorting to pseudo labels. The goal is to construct a self-supervised pretext task that matches the person re-ID objective. Inspired by the data association concept in multi-object tracking, we propose the Cycle Association (CycAs) task: after performing data association between a pair of video frames forward and then backward, a pedestrian instance is supposed to be associated to itself. To fulfill this goal, the model must learn a meaningful representation that can well describe correspondences between instances in frame pairs. We adapt the discrete association process to a differentiable form, such that end-to-end training becomes feasible. Experiments are conducted in two aspects: We first compare our method with existing unsupervised re-ID methods on seven benchmarks and demonstrate CycAs’ superiority. Then, to further validate the practical value of CycAs in real-world applications, we perform training on self-collected videos and report promising performance on standard test sets.
Description
Keywords
Self-supervised, Cycle consistency, person re-ID
Citation
Collections
Source
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Type
Conference paper
Book Title
Entity type
Access Statement
License Rights
Restricted until
2099-12-31
Downloads
File
Description