Campylobacter and Salmonella in Scavenging Indigenous Chickens in Rural Central Tanzania: Prevalence, AntimicrobialResistance, and Genomic Features

Date

2021

Authors

Rukambile, Elpidius
Sintchenko, Vitali
Muscatello, Gary
Wang, Qinning
Kiiru, John
Maulaga, Wende
Magidanga, Bishop
Banda, Grace
Kock, Richard
Alders, Robyn G.

Journal Title

Journal ISSN

Volume Title

Publisher

Multidisciplinary Digital Publishing Institute (MDPI)

Abstract

Introduction: Salmonella and Campylobacter spp. are commonly reported bacterial foodborne pathogens causing morbidity and mortality worldwide. In rural areas, where there is a high occurrence rate of human–animal interactions and poor hygiene practices, shedding animals present a high risk to humans in acquiring animal-associated infections. Materials and methods: Seasonal prevalence of Campylobacter jejuni, Campylobacter coli, and Salmonella spp. in scavenging indigenous chicken faeces was determined by polymerase chain reaction (PCR). Antimicrobial resistance was studied in Salmonella isolates by disc diffusion method, and whole-genome sequenced isolates were used to determine Salmonella serovars, antimicrobial resistance genes, virulence genes, and plasmid profile. Results: The overall prevalence of Campylobacter in chickens was 7.2% in the dry season and 8.0% in the rainy season (p = 0.39), and that of Salmonella was 11.1% in the dry season and 16.2% in the rainy season (p = 0.29). Salmonella serovars detected were II 35:g,m,s,t:-, Ball, Typhimurium, Haardt/Blockley, Braenderup, and Enteritidis/Gallinarum. One S. II 35:g,m,s,t:- isolate was resistant to ampicillin and the rest were either intermediate resistant or pansusceptible to the tested antimicrobials. The resistance genes observed were CatA, tetJ, and fosA7, most common in Ball than in other serovars. Seven plasmids were identified, more common in serovar Ball and less common in II 35:g,m,s,t:-. Serovar II 35:g,m,s,t:- isolates were missing some of the virulence genes important for Salmonella pathogenicity found in other serovars isolated. Conclusions: PCR detection of Campylobacter spp. and Salmonella spp. in chickens necessitate the improvement of hygiene at the household level and reducing human–chicken interaction as a strategy of preventing humans from acquiring chicken-associated bacteria, which would enter the human food chain. Infrequent use of antimicrobials in this type of poultry is most likely the reason for the low rates of antimicrobial resistance observed in this study.

Description

Keywords

Campylobacter, Salmonella, antibiotic resistance, scavenging chickens, whole-genome sequencing

Citation

Source

Microbiology Research

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution (CC BY) license

Restricted until