The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth's mantle: New evidence from in situ analyses of mantle xenoliths

Date

2009

Authors

Witt-Eickschen, G
Palme, Herbert
O'Neill, Hugh
Allen, Charlotte M

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Ltd

Abstract

The abundances of 30 trace elements, including the volatile chalcophile/siderophile elements As, Cd, Ga, In and Sn were determined by laser ablation ICP-MS in minerals of 19 anhydrous and 5 hydrous spinel peridotite xenoliths from three continents. The majority of samples were fertile lherzolites with more than 5% clinopyroxene; several samples have major element compositions close to estimates of the primitive mantle. All samples have been previously analysed for bulk-rock major, minor and lithophile trace elements. They cover a wide range of equilibration temperatures from about 850 to 1250 °C and a pressure range from 0.8 to 3.0 GPa. A comparison of results from bulk-rock analyses with concentrations obtained from combining silicate and oxide mineral data with modal mineralogy, gave excellent agreement, with the exception of As. Arsenic is the only element analysed that has high concentrations in sulphides. For all other elements sulphides can be neglected as host phases in these mantle rocks. The major host phase for Cd, In and Sn is clinopyroxene and if present, amphibole. Cadmium and In appear to behave moderately incompatibly during mantle melting similar to Yb. The data yield new and more reliable mantle abundances for Cd (35 ± 7 ppb), In (18 ± 3 ppb) and Sn (91 ± 28 ppb). The In value is similar to the Mg and CI-normalized Zn abundance of the mantle, although In is cosmochemically more volatile than Zn. The high In content suggests a high content of volatile elements in general in proto-Earth material. The lower relative abundances of volatile chalcophile elements such as Cd, S, Se and Te might be explained by sulphide segregation during core formation. The very low relative abundances of volatile and highly incompatible lithophile elements such as Br, Cl and I, and also C, N and rare gases, imply loss during Earth accretion, arguably by collisional erosion from differentiated planetesimals and protoplanets.

Description

Keywords

Keywords: chemical composition; mantle chemistry; trace element; volatile element; xenolith

Citation

Source

Geochimica et Cosmochimica Acta

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31