From instantly decodable to random linear network coding

Date

2014

Authors

Yu, Ming
Aboutorab, Neda
Sadeghi, Parastoo

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers (IEEE Inc)

Abstract

Our primary goal in this paper is to better understand and extend the achievable tradeoffs between the throughput and decoding delay performance of network coded wireless broadcast. To this end, we traverse the performance gap between two linear network coding schemes: random linear network coding (RLNC) and instantly decodable network coding (IDNC). Our approach is to appropriately partition a block of partially received data packets into subgenerations and broadcast them separately using RLNC. Through analyzing the factors that affect the performance of a generic partitioning scheme, we are led to develop a coding framework in which subgenerations are created from IDNC coding sets in an IDNC solution. This coding framework consists of a series of coding schemes, with classic RLNC and IDNC identified as two extreme schemes. We develop two basic partitioning guidelines, including disjoint partitioning and even partitioning. We design various implementations of this coding framework, such as partitioning algorithms and generation scheduling strategies, to further improve its throughput and decoding delay, to manage feedback frequency and coding complexity, or to achieve in-block performance adaption. Their effectiveness is verified through extensive simulations, and their performance is compared with an existing work in the literature.

Description

Keywords

Citation

Source

IEEE Transactions on Communications

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

DOI

10.1109/TCOMM.2014.2364198

Restricted until

2037-12-31