Diffusion of Ar-40 in muscovite
Date
Authors
Harrison, Timothy
Celerier, Julien
Aikman, Amos
Hermann, Joerg
Heizler, Matthew T.
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-Elsevier Ltd
Abstract
Hydrothermal treatment of closely sized muscovite aggregates in a piston-cylinder apparatus induced 40Ar* loss that is revealed in 40Ar/39Ar step heating spectra. Age spectra and Arrhenius data, however, differ from that expected from a single diffusion length scale. A numerical model of episodic loss assuming the presence of multiple diffusion domains yields excellent fits between synthetic and actual degassing spectra. We used this model to isolate 40Ar* loss from the grains that remained intact during hydrothermal treatment at 10 kbar permitting calculation of diffusion coefficients in the temperature range 730-600 °C. Diffusion data generated in this manner yield an activation energy (E) of 63 ± 7 kcal/mol and frequency factor (Do) of 2.3 (+ 70; - 2.2) cm2/s. Experiments at 20 kbar yield diffusivities lower by about an order of magnitude and correspond to an activation volume of ∼14 cm3/mol. Together, these parameters predict substantially greater retentivity of Ar in muscovite than previously assumed and correspond to a closure temperature (Tc) of 425 °C for a 100 μm radius grain cooling at 10 °C/Ma at 10 kbar (Tc = 405 °C at 5 kbar. Age and log (r/ro) spectra for the run products show strong correlations indicating that muscovites can retain Ar diffusion boundaries and mechanisms that define their natural retentivity during vacuum step heating. This may permit the application of high resolution, continuous 40Ar/39Ar thermochronology to low grade, regionally metamorphosed terranes.
Description
Citation
Collections
Source
Geochimica et Cosmochimica Acta
Type
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31
Downloads
File
Description