Scalar multiplication of a dynamic window with fuzzy controller for elliptic curve cryptography

dc.contributor.authorHuang, Xu
dc.contributor.authorCampbell, John
dc.contributor.authorGao, Frank
dc.coverage.spatialMelbourne, VIC
dc.date.accessioned2022-02-09T00:04:57Z
dc.date.created1 September 2010 through 3 September 2010
dc.date.issued2010
dc.date.updated2020-12-13T07:22:09Z
dc.description.abstractElliptic curve cryptography (ECC) provides solid potential for wireless sensor network security due to its small key size and its high security strength. However, there is a need to reduce key calculation time to satisfy the full range of potential applications, in particular those involving wireless sensor networks (WSN). Scalar multiplication operation in elliptical curve cryptography accounts for 80% of key calculation time on wireless sensor network motes. In this paper, two major contributions are made: (a) we propose an algorithm based on 1's complement subtraction to represent scalar in scalar multiplication which offer less Hamming weight and will significantly improve the computational efficiency of scalar multiplication; and (b) we present a fuzzy controller for dynamic window sizing to allow the program to run under optimum conditions by allocating available RAM and ROM at the sensor node within a wireless sensor network. The simulation results showed that the average calculation time decreased by approximately 15% in comparison to traditional algorithms in an ECC wireless sensor network.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9780769541594en_AU
dc.identifier.urihttp://hdl.handle.net/1885/259884
dc.language.isoen_AUen_AU
dc.publisherIEEEen_AU
dc.relation.ispartofseries4th International Conference on Network and System Security, NSS 2010en_AU
dc.rights© 2010 IEEEen_AU
dc.sourceProceedings - 2010 4th International Conference on Network and System Security, NSS 2010en_AU
dc.subjectElliptic curve cryptographyen_AU
dc.subjectFuzzy controllersen_AU
dc.subjectHamming weightsen_AU
dc.subjectNon-adjacent formen_AU
dc.subjectOne's complement subtractionsen_AU
dc.subjectScalar multiplicationen_AU
dc.subjectAlgorithmsen_AU
dc.subjectComputational efficiencyen_AU
dc.subjectComputer simulationen_AU
dc.subjectControllersen_AU
dc.subjectCryptographyen_AU
dc.subjectGeometryen_AU
dc.subjectNetwork securityen_AU
dc.subjectRan Elliptic curve cryptography (ECC)en_AU
dc.subjectFuzzy controlleren_AU
dc.subjectHamming weighten_AU
dc.subjectNon-adjacent formen_AU
dc.subjectOne's complement subtractionen_AU
dc.subjectScalar multiplicationen_AU
dc.titleScalar multiplication of a dynamic window with fuzzy controller for elliptic curve cryptographyen_AU
dc.typeConference paperen_AU
local.bibliographicCitation.lastpage605en_AU
local.bibliographicCitation.startpage600en_AU
local.contributor.affiliationHuang, Xu, University of Canberraen_AU
local.contributor.affiliationCampbell, John, College of Business and Economics, ANUen_AU
local.contributor.affiliationGao, Frank, University of Canberraen_AU
local.contributor.authoruidCampbell, John, u1020662en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor150302 - Business Information Systemsen_AU
local.identifier.absfor080609 - Information Systems Managementen_AU
local.identifier.ariespublicationU3488905xPUB19095en_AU
local.identifier.doi10.1109/NSS.2010.16en_AU
local.identifier.scopusID2-s2.0-78650350159
local.publisher.urlhttps://www.ieee.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Huang_Scalar_multiplication_of_a_2010.pdf
Size:
416.29 KB
Format:
Adobe Portable Document Format