Boron isotopes in blue diamond record seawater-derived fluids in the lower mantle
Date
2023
Authors
E. Regier, Margo
V. Smit, Karen
Chalk, Thomas B
Stachel, Thomas
Stern, Richard A
M. Smith, Evan
Foster, Gavin L
Bussweiler, Yannick
DeBuhr, Chris
Burnham, Antony
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Boron is a quintessential crustal element but its conspicuous presence in diamond – a mantle mineral – raises questions about potential subduction pathways for boron and other volatiles. It has been a long-standing goal to characterize the isotopic composition of boron in blue, boron-bearing (Type IIb) diamonds to reveal its origin. Mineral inclusions indicate that Type IIb diamonds crystallize at transition zone to lower mantle depths, meaning that if the boron is subducted it would trace a pathway of volatile elements into the deep mantle. Here, using off-line laser ablation sampling, we present the first boron isotope compositions, along with trace element contents and carbon isotope compositions, of a suite of blue diamonds mainly sourced from the Cullinan diamond mine in South Africa. The ten analyzed blue diamonds have a wide range in
B, between −9.2 ± 2‰ and −0.5 ± 2‰, compared to the more restricted range for mid-ocean ridge basalts (−7.1 ± 0.9‰). Carbon isotope values for the blue diamonds range between −20.6 and −1.8‰, with a mode at −17‰, significantly more negative than the main mantle mode at −5‰. Combined, the boron and carbon isotope compositions require fluid input from subducted oceanic lithosphere down into deep mantle source regions of blue diamonds. This finding highlights a deep subduction pathway for volatiles to stoke the source regions of deeply-derived magmas.
Description
Keywords
diamond, boron, carbon, transition zone, lower mantle, serpentinite
Citation
Collections
Source
Earth and Planetary Science Letters
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2099-12-31
Downloads
File
Description