Graph attribute embedding via Riemannian submersion learning

dc.contributor.authorZhao, Haifeng
dc.contributor.authorRobles-Kelly, Antonio
dc.contributor.authorZhou, Jun
dc.contributor.authorLu, Jianfeng
dc.contributor.authorYang, Jing-Yu
dc.date.accessioned2015-12-10T23:33:00Z
dc.date.issued2011
dc.date.updated2016-02-24T08:19:38Z
dc.description.abstractIn this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the
dc.identifier.issn1077-3142
dc.identifier.urihttp://hdl.handle.net/1885/69097
dc.publisherAcademic Press
dc.sourceComputer Vision and Image Understanding
dc.subjectKeywords: Data sets; Digit classification; Embedded graphs; Graph embeddings; Graph matchings; L2-norm; Metric spaces; MPEG-7 database; Node coordinates; Posterior probability; Probability density estimation; Relational matching; Relational structures; Riemannian g Graph embedding; Relational matching; Riemannian geometry
dc.titleGraph attribute embedding via Riemannian submersion learning
dc.typeJournal article
local.bibliographicCitation.issue7
local.bibliographicCitation.lastpage975
local.bibliographicCitation.startpage962
local.contributor.affiliationZhao, Haifeng, Nanjing University of Science and Technology
local.contributor.affiliationRobles-Kelly, Antonio, College of Engineering and Computer Science, ANU
local.contributor.affiliationZhou, Jun, College of Engineering and Computer Science, ANU
local.contributor.affiliationLu, Jianfeng, Nanjing University of Science and Technology
local.contributor.affiliationYang, Jing-Yu, Nanjing University of Science and Technology
local.contributor.authoremailu1811090@anu.edu.au
local.contributor.authoruidRobles-Kelly, Antonio, u1811090
local.contributor.authoruidZhou, Jun, u1818501
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor080104 - Computer Vision
local.identifier.absseo970108 - Expanding Knowledge in the Information and Computing Sciences
local.identifier.absseo970109 - Expanding Knowledge in Engineering
local.identifier.ariespublicationf2965xPUB1919
local.identifier.citationvolume115
local.identifier.doi10.1016/j.cviu.2010.12.005
local.identifier.scopusID2-s2.0-79956101050
local.identifier.thomsonID000291507100006
local.identifier.uidSubmittedByf2965
local.type.statusPublished Version

Downloads

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Zhao_Graph_attribute_embedding_via_2011.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format