Effect of the finite speed of light in ionization of extended molecular systems

Date

Authors

Ivanov, I A
Kheifets, Anatoli
Tim, Kyung Taec

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group

Abstract

We study propagation effects due to the finite speed of light in ionization of extended molecular systems. We present a general quantitative theory of these effects and show under which conditions such effects should appear. The finite speed of light propagation effects are encoded in the non-dipole terms of the time-dependent Shrödinger equation and display themselves in the photoelectron momentum distribution projected on the molecular axis. Our numerical modeling for the H2+ molecular ion and the Ne 2 dimer shows that the finite light propagation time from one atomic center to another can be accurately determined in a table top laser experiment which is much more readily accessible than the ground breaking synchrotron measurement by Grundmann et al. (Science 370:339, 2020).

Description

Keywords

Citation

Source

Scientific Reports

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution License

Restricted until

Downloads