Identifying hotspots of type 2 diabetes risk using general practice data and geospatial analysis: an approach to inform policy and practice

dc.contributor.authorBagheri, Nasser
dc.contributor.authorKonings, Paul
dc.contributor.authorWangdi, Kinley
dc.contributor.authorParkinson, Anne
dc.contributor.authorMazumdar, Soumya
dc.contributor.authorSturgiss, Elizabeth
dc.contributor.authorLal, Aparna
dc.contributor.authorDouglas, Kirsty
dc.contributor.authorGlasgow, Nicholas
dc.date.accessioned2020-09-24T04:52:31Z
dc.date.issued2020
dc.date.updated2020-06-28T08:16:52Z
dc.description.abstractThe prevalence of type 2 diabetes (T2D) is increasing worldwide and there is a need to identify communities with a high-risk profile and to develop appropriate primary care interventions. This study aimed to predict future T2D risk and identify community-level geographic variations using general practices data. The Australian T2D risk assessment (AUSDRISK) tool was used to calculate the individual T2D risk scores using 55 693 clinical records from 16 general practices in west Adelaide, South Australia, Australia. Spatial clusters and potential ‘hotspots’ of T2D risk were examined using Local Moran’s I and the Getis-Ord Gi* techniques. Further, the correlation between T2D risk and the socioeconomic status of communities were mapped. Individual risk scores were categorised into three groups: low risk (34.0% of participants), moderate risk (35.2% of participants) and high risk (30.8% of participants). Spatial analysis showed heterogeneity in T2D risk across communities, with significant clusters in the central part of the study area. These study results suggest that routinely collected data from general practices offer a rich source of data that may be a useful and efficient approach for identifying T2D hotspots across communities. Mapping aggregated T2D risk offers a novel approach to identifying areas of unmet need.en_AU
dc.description.sponsorshipThis article received funding support from the Australian Research Council (DE14 0101570).en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1448-7527en_AU
dc.identifier.urihttp://hdl.handle.net/1885/211615
dc.language.isoen_AUen_AU
dc.provenancehttps://v2.sherpa.ac.uk/id/publication/7671..."The Accepted Version can be archived in an Institutional Repository" from SHERPA/RoMEO site (as at 29/09/2020).
dc.publisherCSIRO Publishingen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DE140101570en_AU
dc.rights© La Trobe University 2020en_AU
dc.sourceAustralian Journal of Primary Healthen_AU
dc.subjectgeographical variationen_AU
dc.subjectprimary health careen_AU
dc.subjectspatial clustersen_AU
dc.subjectT2D risken_AU
dc.titleIdentifying hotspots of type 2 diabetes risk using general practice data and geospatial analysis: an approach to inform policy and practiceen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Access
local.bibliographicCitation.issue1en_AU
local.bibliographicCitation.lastpage51en_AU
local.bibliographicCitation.startpage43en_AU
local.contributor.affiliationBagheri, Nasser, College of Health and Medicine, ANUen_AU
local.contributor.affiliationKonings, Paul, College of Health and Medicine, ANUen_AU
local.contributor.affiliationWangdi, Kinley, College of Health and Medicine, ANUen_AU
local.contributor.affiliationParkinson, Anne, College of Health and Medicine, ANUen_AU
local.contributor.affiliationMazumdar, Soumya, Liverpool Hospitalen_AU
local.contributor.affiliationSturgiss , Elizabeth , Department of General Practice, Monash Universityen_AU
local.contributor.affiliationLal, Aparna, College of Health and Medicine, ANUen_AU
local.contributor.affiliationDouglas , Kirsty , Department of General Practice, Monash Universityen_AU
local.contributor.affiliationGlasgow, Nicholas, College of Health and Medicine, ANUen_AU
local.contributor.authoremailu5608272@anu.edu.auen_AU
local.contributor.authoruidBagheri, Nasser, u5234024en_AU
local.contributor.authoruidKonings, Paul, u1551009en_AU
local.contributor.authoruidWangdi, Kinley, u5608272en_AU
local.contributor.authoruidParkinson, Anne, u5032495en_AU
local.contributor.authoruidLal, Aparna, u5485002en_AU
local.contributor.authoruidGlasgow, Nicholas, u4240990en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor111711 - Health Information Systems (incl. Surveillance)en_AU
local.identifier.absseo920104 - Diabetesen_AU
local.identifier.ariespublicationa383154xPUB10872en_AU
local.identifier.citationvolume26en_AU
local.identifier.doi10.1071/PY19043en_AU
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttp://www.publish.csiro.au/nid/261.htmen_AU
local.type.statusAccepted Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Identifying hotspots AAM.pdf
Size:
1018.47 KB
Format:
Adobe Portable Document Format