Deep subspace clustering networks

dc.contributor.authorJi, Pan
dc.contributor.authorZhang, Tong
dc.contributor.authorLi, Hongdong
dc.contributor.authorSalzmann, Mathieu
dc.contributor.authorReid, Ian
dc.contributor.editorGuyon, I.
dc.contributor.editorLuxburg, U.
dc.contributor.editorBengio, S.
dc.contributor.editorWallach, H.
dc.contributor.editorFergus, R.
dc.coverage.spatialLong Beach, CA, USA
dc.date.accessioned2020-06-23T01:29:34Z
dc.date.available2020-06-23T01:29:34Z
dc.date.createdDecember 4-9 2017
dc.date.issued2017
dc.date.updated2020-01-19T07:30:52Z
dc.description.abstractWe present a novel deep neural network architecture for unsupervised subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the "self-expressiveness" property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. We further propose pre-training and fine-tuning strategies that let us effectively learn the parameters of our subspace clustering networks. Our experiments show that our method significantly outperforms the state-of-the-art unsupervised subspace clustering techniques.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.urihttp://hdl.handle.net/1885/205448
dc.language.isoen_AUen_AU
dc.publisherNeural Information Processing Systems Foundationen_AU
dc.relation.ispartofseries31st Annual Conference on Neural Information Processing Systems, NIPS 2017
dc.rights© 2017 The Author(s)en_AU
dc.sourceProceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS 2017en_AU
dc.source.urihttps://dl.acm.org/doi/10.5555/3294771.3294774en_AU
dc.titleDeep subspace clustering networksen_AU
dc.typeConference paperen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.lastpage32en_AU
local.bibliographicCitation.startpage23en_AU
local.contributor.affiliationJi, Pan, University of Adelaideen_AU
local.contributor.affiliationZhang, Tong, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationLi, Hongdong, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationSalzmann, Mathieu, EPFLen_AU
local.contributor.affiliationReid, Ian, The University of Adelaideen_AU
local.contributor.authoremailu4056952@anu.edu.auen_AU
local.contributor.authoruidZhang, Tong, u5680172en_AU
local.contributor.authoruidLi, Hongdong, u4056952en_AU
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor080106 - Image Processingen_AU
local.identifier.absfor080104 - Computer Visionen_AU
local.identifier.absfor080101 - Adaptive Agents and Intelligent Roboticsen_AU
local.identifier.absseo890401 - Animation and Computer Generated Imagery Servicesen_AU
local.identifier.absseo890205 - Information Processing Services (incl. Data Entry and Capture)en_AU
local.identifier.ariespublicationu4485658xPUB410en_AU
local.identifier.doi978-1-5108-6096-4en_AU
local.identifier.scopusID2-s2.0-85047004594
local.identifier.uidSubmittedByu4485658en_AU
local.publisher.urlhttps://dl.acm.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Ji_Deep_subspace_clustering_2017.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format