Deep subspace clustering networks
dc.contributor.author | Ji, Pan | |
dc.contributor.author | Zhang, Tong | |
dc.contributor.author | Li, Hongdong | |
dc.contributor.author | Salzmann, Mathieu | |
dc.contributor.author | Reid, Ian | |
dc.contributor.editor | Guyon, I. | |
dc.contributor.editor | Luxburg, U. | |
dc.contributor.editor | Bengio, S. | |
dc.contributor.editor | Wallach, H. | |
dc.contributor.editor | Fergus, R. | |
dc.coverage.spatial | Long Beach, CA, USA | |
dc.date.accessioned | 2020-06-23T01:29:34Z | |
dc.date.available | 2020-06-23T01:29:34Z | |
dc.date.created | December 4-9 2017 | |
dc.date.issued | 2017 | |
dc.date.updated | 2020-01-19T07:30:52Z | |
dc.description.abstract | We present a novel deep neural network architecture for unsupervised subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the "self-expressiveness" property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. We further propose pre-training and fine-tuning strategies that let us effectively learn the parameters of our subspace clustering networks. Our experiments show that our method significantly outperforms the state-of-the-art unsupervised subspace clustering techniques. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/205448 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | Neural Information Processing Systems Foundation | en_AU |
dc.relation.ispartofseries | 31st Annual Conference on Neural Information Processing Systems, NIPS 2017 | |
dc.rights | © 2017 The Author(s) | en_AU |
dc.source | Proceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS 2017 | en_AU |
dc.source.uri | https://dl.acm.org/doi/10.5555/3294771.3294774 | en_AU |
dc.title | Deep subspace clustering networks | en_AU |
dc.type | Conference paper | en_AU |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.lastpage | 32 | en_AU |
local.bibliographicCitation.startpage | 23 | en_AU |
local.contributor.affiliation | Ji, Pan, University of Adelaide | en_AU |
local.contributor.affiliation | Zhang, Tong, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Li, Hongdong, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Salzmann, Mathieu, EPFL | en_AU |
local.contributor.affiliation | Reid, Ian, The University of Adelaide | en_AU |
local.contributor.authoremail | u4056952@anu.edu.au | en_AU |
local.contributor.authoruid | Zhang, Tong, u5680172 | en_AU |
local.contributor.authoruid | Li, Hongdong, u4056952 | en_AU |
local.description.notes | Imported from ARIES | en_AU |
local.description.refereed | Yes | |
local.identifier.absfor | 080106 - Image Processing | en_AU |
local.identifier.absfor | 080104 - Computer Vision | en_AU |
local.identifier.absfor | 080101 - Adaptive Agents and Intelligent Robotics | en_AU |
local.identifier.absseo | 890401 - Animation and Computer Generated Imagery Services | en_AU |
local.identifier.absseo | 890205 - Information Processing Services (incl. Data Entry and Capture) | en_AU |
local.identifier.ariespublication | u4485658xPUB410 | en_AU |
local.identifier.doi | 978-1-5108-6096-4 | en_AU |
local.identifier.scopusID | 2-s2.0-85047004594 | |
local.identifier.uidSubmittedBy | u4485658 | en_AU |
local.publisher.url | https://dl.acm.org/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 01_Ji_Deep_subspace_clustering_2017.pdf
- Size:
- 1.77 MB
- Format:
- Adobe Portable Document Format