A quantum extended Kalman filter

Date

2017

Authors

Emzir, Muhammad F
Woolley, Matthew J
Petersen, Ian

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Electronic Journals

Abstract

In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with 'state-dependent' covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

Description

Keywords

quantum filtering, stochastic master equation, homodyne detection and photon counting, Kalman filter, extended Kalman filter

Citation

Source

Journal of Physics A: Mathematical and Theoretical

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2099-12-31