Assessment of gait characteristics in total knee arthroplasty patients using a hierarchical partial least squares method

dc.contributor.authorWang, Wei
dc.contributor.authorAckland, David C.
dc.contributor.authorMcClelland, Jodie A.
dc.contributor.authorWebster, Kate E.
dc.contributor.authorHalgamuge, Saman
dc.date.accessioned2023-12-11T04:17:35Z
dc.date.issued2017-03-30
dc.date.updated2022-09-04T08:17:33Z
dc.description.abstractQuantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, knee range of motion and peaks in kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy 85:14%. The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.en_AU
dc.description.sponsorshipThe work of W. Wang is supported by a PhD scholarship at The University of Melbourne. This work is partially funded by an Australian Research Council grant DP150103512.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn2168-2194en_AU
dc.identifier.urihttp://hdl.handle.net/1885/309774
dc.language.isoen_AUen_AU
dc.publisherIEEE Computer Societyen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DP150103512en_AU
dc.rights© 2017 IEEEen_AU
dc.sourceIEEE Journal of Biomedical and Health Informaticsen_AU
dc.subjectData interpretationen_AU
dc.subjectfeature extractionen_AU
dc.subjectgait analysisen_AU
dc.subjectmultiple waveformsen_AU
dc.subjectpattern recognitionen_AU
dc.subjectprincipal component analysisen_AU
dc.titleAssessment of gait characteristics in total knee arthroplasty patients using a hierarchical partial least squares methoden_AU
dc.typeJournal articleen_AU
dcterms.dateAccepted2017-03-22
local.bibliographicCitation.issue1en_AU
local.bibliographicCitation.lastpage214en_AU
local.bibliographicCitation.startpage205en_AU
local.contributor.affiliationWang, Wei, The University of Melbourneen_AU
local.contributor.affiliationAckland, David C., University of Melbourneen_AU
local.contributor.affiliationMcClelland, Jodie A., La Trobe Universityen_AU
local.contributor.affiliationWebster, Kate E., La Trobe Universityen_AU
local.contributor.affiliationHalgamuge, Saman, College of Engineering and Computer Science, ANUen_AU
local.contributor.authoremailu1029002@anu.edu.auen_AU
local.contributor.authoruidHalgamuge, Saman, u1029002en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor310200 - Bioinformatics and computational biologyen_AU
local.identifier.absfor400600 - Communications engineeringen_AU
local.identifier.ariespublicationu5357342xPUB520en_AU
local.identifier.citationvolume22en_AU
local.identifier.doi10.1109/JBHI.2017.2689070en_AU
local.identifier.essn2168-2208en_AU
local.identifier.scopusID2-s2.0-85040312004
local.identifier.thomsonIDWOS:000419560100023
local.identifier.uidSubmittedByu5357342en_AU
local.publisher.urlhttps://ieeexplore.ieee.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Assessment_of_Gait_Characteristics_in_Total_Knee_Arthroplasty_Patients_Using_a_Hierarchical_Partial_Least_Squares_Method.pdf
Size:
644.84 KB
Format:
Adobe Portable Document Format
Description: