The Impact of Abyssal Hill Roughness on the Benthic Tide

dc.contributor.authorShakespeare, Callum
dc.contributor.authorArbic, Brian K.
dc.contributor.authorHogg, Andy
dc.date.accessioned2022-11-02T22:47:32Z
dc.date.available2022-11-02T22:47:32Z
dc.date.issued2021
dc.date.updated2021-11-28T07:26:15Z
dc.description.abstractThe flow of tides over rough bathymetry in the deep ocean generates baroclinic motion including internal waves and bottom-trapped tides. The stresses generated by this motion feedback on the amplitude and phase of the large-scale tide. Quantifying the stresses associated with tidal flow over abyssal hills is especially important, as this scale of bathymetry is often unresolved in global baroclinic tide models, and the stresses must therefore be parameterized. Here, we extend the previous theoretical work of the authors to determine the amplitude, phasing, and vertical location of the stresses exerted on a flow driven by a time-periodic body force when it encounters rough bathymetry. The theory compares favorably with a suite of fully nonlinear numerical simulations. It is shown that all topographic stresses are applied directly above the bathymetry, leading to a two-layer baroclinic flow, with the near-bottom spatial-mean flow (the benthic tide) strongly modified by topographic stresses, and the flow at height unperturbed by the presence of topography. Our results provide a framework to improve baroclinic tide models by (i) providing a simple parameterization for the subinertial stress which is currently not included in any models, (ii) establishing that parameterized stresses should be applied in the diffusive boundary layer directly above the topography, independent of where internal tides may dissipate, and (iii) identifying a minimum resolution of ∼10 km for baroclinic tidal models to adequately capture wave resonance effects that can significantly impact the magnitude of the benthic tide.en_AU
dc.description.sponsorshipCallum J. Shakespeare acknowledges support from an ARC Discovery Early Career Researcher Award DE180100087 and an Australian National Univer-sity Futures Scheme award. Brian K. Arbic acknowledges support from US National Science Foundation grant OCE-1351837en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1942-2466en_AU
dc.identifier.urihttp://hdl.handle.net/1885/277962
dc.language.isoen_AUen_AU
dc.provenanceThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivsLicense, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are madeen_AU
dc.publisherAmerican Geophysical Unionen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DE180100087en_AU
dc.rights© 2021. The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.en_AU
dc.rights.licenseCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_AU
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_AU
dc.sourceJournal of Advances in Modeling Earth Systemsen_AU
dc.titleThe Impact of Abyssal Hill Roughness on the Benthic Tideen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue5en_AU
local.bibliographicCitation.lastpage21en_AU
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationShakespeare, Callum, College of Science, ANUen_AU
local.contributor.affiliationArbic, Brian K., University of Michiganen_AU
local.contributor.affiliationHogg, Andy, College of Science, ANUen_AU
local.contributor.authoremailu4962890@anu.edu.auen_AU
local.contributor.authoruidShakespeare, Callum, u4962890en_AU
local.contributor.authoruidHogg, Andy, u3586031en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor370000 - EARTH SCIENCESen_AU
local.identifier.absseo280107 - Expanding knowledge in the earth sciencesen_AU
local.identifier.ariespublicationa383154xPUB19794en_AU
local.identifier.citationvolume13en_AU
local.identifier.doi10.1029/2020MS002376en_AU
local.identifier.scopusID2-s2.0-85106865495
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://www.wiley.com/en-gben_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J Adv Model Earth Syst - 2021 - Shakespeare - The Impact of Abyssal Hill Roughness on the Benthic Tide.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format
Description: