Open Research will be unavailable from 8am to 8.30am on Monday 21st July 2025 due to scheduled maintenance. This maintenance is to provide bug fixes and performance improvements. During this time, you may experience a short outage and be unable to use Open Research.
 

Material Properties of Lipid Microdomains: Force-Volume Imaging Study of the Effect of Cholesterol on Lipid Microdomain Rigidity

Date

Authors

An, Hongjie
Nussio, Matthew R.
Huson, Mickey G.
Voelcker, Nicolas H.
Shapter, Joseph G.

Journal Title

Journal ISSN

Volume Title

Publisher

Biophysical Society

Abstract

The effect of cholesterol (CHOL) on the material properties of supported lipid bilayers composed of lipid mixtures that mimic the composition of lipid microdomains was studied by force-volume (FV) imaging under near-physiological conditions. These studies were carried out with lipid mixtures of dioleoylphosphatidylcholine, dioleoylphosphatidylserine, and sphingomyelin. FV imaging enabled simultaneous topology and force measurements of sphingomyelin-rich domains (higher domain (HD)) and phospholipid-rich domains (lower domain (LD)), which allowed quantitative measurement of the force needed to puncture the lipid bilayer with or without CHOL. The force required to penetrate the various domains of the bilayer was probed using high- and low-ionic-strength buffers as a function of increasing amounts of CHOL in the bilayer. The progressive addition of CHOL also led to a decreasing height difference between HD and LD. FV imaging further demonstrated a lack of adhesion between the atomic force microscope tip and the HD or LD at loads below the breakthrough force. These results can lead to a better understanding of the role that CHOL plays in the mechanical properties of cellular membranes in modulating membrane rigidity, which has important implications for cellular mechanotransduction.

Description

Citation

Source

Biophysical Journal

Book Title

Entity type

Access Statement

License Rights

Restricted until