Quantum correlations between the light and kilogram-mass mirrors of LIGO

dc.contributor.authorYu, Haocun
dc.contributor.authorMcCuller, L
dc.contributor.authorTse, M
dc.contributor.authorBarsotti, L
dc.contributor.authorMavalvala, Nergis
dc.contributor.authorBetzwieser, Joseph
dc.contributor.authorBlair, C. D.
dc.contributor.authorDwyer, S
dc.contributor.authorEffler, A.
dc.contributor.authorEvans, M
dc.contributor.authorKijbunchoo, Nutsinee
dc.contributor.authorMcClelland, David
dc.contributor.authorMcRae, Terry
dc.contributor.authorSlagmolen, Bram
dc.contributor.authorHolland, Nathan
dc.contributor.authorWard, Robert
dc.date.accessioned2022-02-16T02:50:31Z
dc.date.available2022-02-16T02:50:31Z
dc.date.issued2020-07-01
dc.date.updated2020-12-13T07:27:30Z
dc.description.abstractThe measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit1,2,3,4. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects5. Here we confirm experimentally the theoretical prediction5 that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements.en_AU
dc.description.sponsorshipLIGO was constructed by the California Institute of Technology and the Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under Cooperative Agreement number PHY-1764464. Advanced LIGO was built under grant number PHY-0823459. The authors gratefully acknowledge the support of the Australian Research Council under the ARC Centre of Excellence for Gravitational Wave Discovery grant number CE170100004, Linkage Infrastructure, Equipment and Facilities grant number LE170100217 and Discovery Early Career Award number DE190100437; the National Science Foundation Graduate Research Fellowship under grant number 1122374; the Science and Technology Facilities Council of the United Kingdom; and the LIGO Scientific Collaboration Fellows programme.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1476-4687en_AU
dc.identifier.urihttp://hdl.handle.net/1885/261194
dc.language.isoen_AUen_AU
dc.provenancehttps://v2.sherpa.ac.uk/id/publication/4008..."The Accepted Version can be archived in a Non-Commercial Institutional Repository. 6 months embargo" from SHERPA/RoMEO site (as at 16/02/2022).en_AU
dc.publisherNature Publishing Groupen_AU
dc.relationhttp://purl.org/au-research/grants/arc/CE170100004en_AU
dc.relationhttp://purl.org/au-research/grants/arc/LE170100217en_AU
dc.relationhttp://purl.org/au-research/grants/arc/DE190100437en_AU
dc.rights© 2020 Nature Publishing Groupen_AU
dc.sourceNatureen_AU
dc.titleQuantum correlations between the light and kilogram-mass mirrors of LIGOen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.lastpage47en_AU
local.bibliographicCitation.startpage43en_AU
local.contributor.affiliationYu, Haocun, Massachusetts Institute of Technologyen_AU
local.contributor.affiliationMcCuller, L, Massachusetts Institute of Technologyen_AU
local.contributor.affiliationTse, M, LIGO—Massachusetts Institute of Technologyen_AU
local.contributor.affiliationBarsotti, L, Massachusetts Institute of Technologyen_AU
local.contributor.affiliationMavalvala, Nergis , Massachusetts Institute of Technologyen_AU
local.contributor.affiliationBetzwieser, Joseph, LIGO Livingston Observatoryen_AU
local.contributor.affiliationBlair, C. D., LIGO Livingston Observatoryen_AU
local.contributor.affiliationDwyer, S, LIGO Hanford Observatoryen_AU
local.contributor.affiliationEffler, A., LIGO Livingston Observatoryen_AU
local.contributor.affiliationEvans, M, Massachusetts Institute of Technologyen_AU
local.contributor.affiliationKijbunchoo, Nutsinee, College of Science, ANUen_AU
local.contributor.affiliationMcClelland, David, College of Science, ANUen_AU
local.contributor.affiliationMcRae, Terry, College of Science, ANUen_AU
local.contributor.affiliationSlagmolen, Bram, College of Science, ANUen_AU
local.contributor.affiliationHolland, Nathan, College of Science, ANUen_AU
local.contributor.affiliationWard, Robert, College of Science, ANUen_AU
local.contributor.authoremailu8802403@anu.edu.auen_AU
local.contributor.authoruidKijbunchoo, Nutsinee, u6400927en_AU
local.contributor.authoruidMcClelland, David, u8802403en_AU
local.contributor.authoruidMcRae, Terry, u1008768en_AU
local.contributor.authoruidSlagmolen, Bram, u9905035en_AU
local.contributor.authoruidHolland, Nathan, u5748557en_AU
local.contributor.authoruidWard, Robert, u5088188en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor020105 - General Relativity and Gravitational Wavesen_AU
local.identifier.absfor020102 - Astronomical and Space Instrumentationen_AU
local.identifier.absfor020604 - Quantum Opticsen_AU
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciencesen_AU
local.identifier.ariespublicationU4474173xPUB61en_AU
local.identifier.ariespublicationa383154xPUB13317
local.identifier.ariespublicationa383154xPUB34379
local.identifier.citationvolume583en_AU
local.identifier.doi10.1038/s41586-020-2420-8en_AU
local.identifier.uidSubmittedByU4474173en_AU
local.publisher.urlhttp://www.nature.com/nature/en_AU
local.type.statusAccepted Versionen_AU

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Yu_Quantum_correlations_between_2020.pdf
Size:
4.19 MB
Format:
Adobe Portable Document Format